SECTION A (60 Marks)

Answer ALL questions in this section showing ALL necessary workings and answers.

1. (a) Use logarithms to find

(ii)
$$\theta$$
, if $\tan \theta = \frac{14.32 \tan 16^{\circ} 24'}{76.9}$.

(2 marks)

(b) Using a non programmable scientific calculator, find

24° 6′ 31" + 85.34 rad (give the answer in radians to 7 dec. places).

By using the statistical functions of your scientific calculator, find the mean (\bar{x}) and the standard deviation (σ_{n-1}) of the following values (correct to 8 decimal places).

Value	110	130	150	170	190
Frequency	10	31	24	2	2
	5.4	4355	1500	2375	33.0

3 marks

- 2. Find the equation of the circle which passes through the point A and touches the line ℓ at the point B where A(4, -3), B(3, 2) and ℓ : x + 2y = 7.
- 73. Find the equation of the parabola whose focus is the point (-2, 0), and whose directrix is the line x = 2. Draw the parabola and label its focus, vertex, directrix and axis. 6 marks
- 4. (a) Solve the following simultaneous equations
 - (i) $\log_x y = 2$ and xy = 8.

(ii)
$$\log (x + y) = 0$$
 and $2 \log x = \log (y + 1)$. (4 marks)

(b) Find the positive value of x that satisfies the equation

$$Log_{2}x = log_{4}(x+6). \tag{2 marks}$$

5. (a) Prove that

$$\cos^2\theta + \cos^2(\theta + \frac{2}{3}\pi) + \cos^2(\theta + \frac{4}{3}\pi) = \frac{3}{2}.$$
 (3 marks)

(b) If
$$\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \tan 60^\circ$$
, prove that one value of θ is 15°. (3 marks)

6 2 4 1 2 CO 12 Sino

- √ 6. Differentiate
 - (a) $\log_{10} x^2$

(2 marks)

(b) $\tan^{-1}(\coth x)$

(2 marks)

(c) $\ln \frac{\sin x}{\cos 2x}$

- (2 marks)
- $\sqrt{7}$. Let a = i + j, b = i j and c = 3i 4j. Resolve c into vectors paralled to a and b
 - (6 marks)

- √8. Do the following integrals
 - (a) $\int \sqrt{x} dx$

(1/2 mark)

(b) $\int_{x e^{3x^2} dx}$

(1½ marks)

(c) $\int \frac{\cos \theta}{1 + \sin^2 \theta} d\theta$

(2 marks)

(d) $\int_{0}^{\pi/4} (1 + \sin \theta)^2 d\theta$

- (2 marks)
- 9. One bag contains 4 white balls and 2 black balls; another bag contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
 - (a) both are white balls.

(2 marks)

(b) both are black balls.

(2 marks)

(c) one is a white ball and one is a black ball.

- (2 marks)
- 10. Five coins were tossed 1,000 times, and at each toss the number of heads were counted. The number of tosses during which 0, 1, 2, 3, 4 and 5 heads were obtained is shown in a table.

Number of	Number of		
heads	tosses (Freq.)		
0	38		
1	144		
2	342		
3	287		
4	164		
5	25		
Total	1,000		

- (a) Draw the graph which represent the data.
- (4 marks)

1. 10 - 1. 10 m

(b) From the graph, give a statement which shows that the probability of getting a head is almost a half. (2 marks)

SECTION B (40 Marks)

Answer ANY FOUR (4) questions from this section showing all necessary workings and answers.

11. (a) Express the vector $\mathbf{r} = 10\mathbf{i} - 3\mathbf{j} - \mathbf{k}$ as a linear function of \mathbf{a} , \mathbf{b} and \mathbf{c} given that

$$a = 2i - j + 3k$$

$$b = 3i + 2j - 4k$$
and $c = -i + 3j - 2k$ (5 marks)

(b) Find the position vector of the foot of the perpendicular from the origin to the line

$$d = 3mi + 4(1-m)j$$
, where m is a scalar.

12. (a) By the use of Cramer's rule, solve the following system of equations.

$$\begin{cases} 2x + 3y - z = -7 \\ -3x + y + 2z = 1 \\ 3x - 4y - 4z = -1 \end{cases}$$
 (7 marks)

(b) State the condition for the following system of equations to be consistent:

$$ax + by + cz = u$$

 $a'x + b'y + c'z = u'$
 $a''x + b''y + c''z = u''$ (1 mark)

(c) Show without solving the system of equations below whether they are consistent or not.

$$2x - 3y + z = 4$$

 $3x + y - z = 6$
 $5x + 9y - 2z = 3$ (2 marks)

✓ 13. (a) Transform the following equation into polar coordinates.

$$(x^2 + y^2)^3 = a^2x y (x^2 - y^2)$$
 (2 marks)

(b) Sketch the curve whose polar equation is given by

(b) Sketch the curve whose polar equation is given by

$$r = 1 + 2\cos\theta.$$

(5 marks)

(c) Find the area of the curve in (b).

(3 marks)

14. (a) Show that

$$\frac{1 + \tanh x}{1 - \tanh x} = \cosh 2x + \sinh 2x$$
 (5 marks)

(b) Integrate
$$\sqrt{x^2 + 2x - 1}$$
 with respect to x. (5 marks)

15. Integrate the following with respect to x.

(a)
$$\int \sqrt{x^2 + 25} \, dx$$
 (2½ marks)

$$\int \frac{dx}{2x^2 + x - 3}$$
 (4 marks)

16. (a) Simplify the following using appropriate laws.

(i)
$$\sim (pv\sim q)$$

(ii)
$$\sim (\sim p \land q)$$
 (2 marks)

(b) By using truth tables, prove the following.

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

(c) Consider the truth table below.

P	Q	R	(k)	(l)	(m)
T	T	T	T	T	F
T	T	F	F	T	T
T	F	T	Т	Т	T
T	F	F	F	T	F
F	T	T	F	F	F
F	T	F	F	F	F
F	F	T	F	F	F
F	F	F	F	F	T

- (i) Write the compound statements equivalent to the truth table of (k), (l) and (m).
- (ii) Simplify the compound statement for (k).
- (iii) Draw the corresponding network of (ii).

(3 marks)