THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

141

BASIC APPLIED MATHEMATICS

(For Both School and Private Candidates)

Time: 3 Hours

Monday, 11th February 2013 a.m.

Instructions

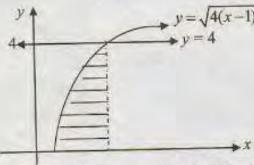
- This paper consists of ten (10) compulsory questions. Each question carries ten (10) marks.
- All work done in answering each question must be shown clearly.
- 3. Mathematical tables and non programmable calculators may be used.
- 4. Cellular phones are not allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).

Page 1 of 4

- 1. By using a non programmable calculator:
 - (a) Compute the value of $\sqrt[3]{\frac{3.141 \times 2.751}{47 \times 39.8}}$ and write your answer in 6 decimal places.
 - (b) Find the sum of the finite series $2\left[\frac{1}{1\cdot 2^1} + \frac{1}{3\cdot 2^3} + \frac{1}{5\cdot 2^5} + \frac{1}{7\cdot 2^7} + \frac{1}{9\cdot 2^9}\right]$ and write your answer in 4 decimal places.
 - (c) Find the mean length of 200 engine components that were measured and recorded as follows:

Length (mm)	198	199	200	201	202
Frequency	8	30	132	24	6

- (d) Find the value of $^{15}P_6 \times ^{10}P_2$.
- (e) Compute the value of ⁸C₅ × ¹¹C₂ × 9!
- 2. (a) The functions f and g are defined by $f: x \mapsto \ln x$ and $g: x \mapsto e^x$.
 - (i) Sketch the graphs of f on $0 \le x \le 3$ and g on $-3 \le x \le 3$ on the same x and y plane.
 - (ii) State the domain and range of f and g.
 - (iii) Identify the asymptotes for f, g and describe briefly how f and g behave near the asymptotes.
 - (b) Given $f(a) = \frac{a-1}{a+1}$, show that $f(\frac{1}{a}) = -f(a)$.
- (a) The first four terms of the series A, B and C are given below. Among the series, one is an arithmetic series, one is a geometric series and the remaining is neither.


- State the value of the common difference of the arithmetic series and calculate the 21st term of this series.
- (ii) Find S_{10} of the geometric series.
- (b) If the length of a paper in a roll of given dimensions varies inversely as the thickness of the paper, find the increase in length when the thickness of a paper in a 100 m roll is decreased from 0.25 mm to 0.20 mm.
- (a) Differentiate with respect to x the functions:

(i)
$$f(x) = e^{\sin x}$$
,

(ii)
$$y = \frac{3}{x^3} - \frac{1}{\sqrt{x}}$$
,

(iii)
$$x^2 + xy + y^3 - 2x + 3y = 0$$
.

- (b) Find the turning points of the polynomial function $y = x^3 x^2$ and hence sketch the graph of this function.
- 5. (a) Evaluate the integrals:
 - (i) $\int \sin(4x+6) \, dx,$
 - (ii) $\int_{0}^{1} (x^3 + 1)^2 dx.$
 - (b) The graph of $y = \sqrt{4(x-1)}$ is shown in the sketch below together with the line y = 4.

Find the volume generated when the shaded area is rotated completely about the x-axis, leaving your answer in terms of π .

The scores of 40 students in a mathematics test are given below.

Scores	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80	81-90
	21-00		10	0	6	Λ	3
Number of students	3	6	10	8	0		

- (a) Represent the students' scores in a histogram and then use it to calculate the mode.
- (b) Find;
 - (i) Variance of the scores,
 - (ii) The standard deviation of the scores.
- (a) (i) Draw 2 possible venn diagrams representing two events A and B in a sample space S and then write down the formulae corresponding to P(A∪B).
 - (ii) Given that A and B are mutually exclusive events with probabilities

$$P(A) = \frac{1}{4}$$
 and $P(B) = \frac{2}{3}$, find $P(A \cup B)'$.

- (b) Ntibagomba is going on holiday. He has 6 different shirts and has decided that he only needs to take 3 shirts. Find the number of different selections that he can make.
- (c) Find the number of ways that six children Kauki, John, Tito, Ben, Kato and Sara can stand in a line outside the canteen waiting for lunch.

- 8. (a) If A is an acute angle such that $\tan A = \frac{3}{4}$, find without using tables or calculator, the values of (i) $\cos 2A$ and (ii) $\sin \frac{A}{2}$.
 - (b) Solve the equation $2\sin(x+60^\circ) = \cos(x-30^\circ)$ in the range $0^\circ \le x \le 360^\circ$ by expanding the sine and the cosine terms.
- 9. (a) Given that $A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} -4 & 3 \\ -5 & 2 \end{pmatrix}$, verify that $(AB)^T = B^T A^T$.
 - (b) Show whether the following system of equations has a common solution or not. 7x-3y-3z=7 2x+4y+z=0 -2y-z=2
 - (c) The results of three soccer teams Simba (S), Yanga (Y) and Mtibwa Sugar (M) are shown in matrix R and the points awarded for each team in matrix P.

Multiply the matrices and hence state which team has many points.

10. The data for M & P Company, which manufactures tables and chairs, is given in the table below:

	Labour Hours per Îtem		Maximum Labour Hours Available	
- F - Ar - bank)	Table	Chair		
Assembly Department	16	4	800	
Finishing Department	4	2	240	
Profit per Item	Shs. 10,000/=	Shs. 4000/=		

- (a) How many tables and chairs that should be manufactured to realize a maximum profit?
- (b) What is the maximum profit?