

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

141

BASIC APPLIED MATHEMATICS

(For Both School and Private Candidates)

Time: 3 Hours

Tuesday, 02nd May 2017 a.m.

Instructions

- This paper consists of ten (10) compulsory questions. Each question carries ten (10) marks.
- All necessary workings and answers for each question must be shown clearly.
- Mathematical tables and non-programmable calculators may be used.
- Cellular phones are not allowed in the examination room.
- Write your Examination Number on every page of your answer booklet(s).

Page 1 of 5 AC17015 (a) Use a scientific calculator to find the values of each of the following expressions,

(i)
$$\frac{458.4^3 \times 0.00274 - 7560 \div 3567^3}{458.4^3 \times 0.00274 + 9681 \div 1516^2},$$

(ii)
$$\frac{547}{250} \left[\sum_{i=1}^{3} i(i+3)(i+4) \right]^{\frac{1}{2}}$$
.

- (b) (i) Find $\log y$, if $y = \frac{-\sqrt[3]{3.14}}{\sin 45^\circ \log 7}$ correct to six decimal places.
 - (ii) Determine the value of q if $2.37q^3 + 0.625e^{\pi} = 314$.
- 2. (a) Given that f(x)=3x-1 and $g(x)=\sqrt{2x-1}$. Find,
 - (i) $f \circ g(25)$,
 - (ii) $g \circ f(14)$.
 - (b) (i) Verify that x+4 is not a factor of the polynomial function $f(x) = x^3 9x^2 + 10x 24.$
 - (ii) Describe the nature of the stationary points of the function $f(x) = 2x^3 15x^2 + 24x$, hence show them on the graph.
- 3. (a) A series is given by $S_n = \sum_{r=1}^{n} (2r-3)$,
 - (i) Determine the value of S_{50} in the series.
 - (ii) Find the value of n such that $S_n = 624$.
 - (b) Determine the values of x and y in the following simultaneous equations, $(\log(x+y)=1)$

4. (a) Find $\frac{dy}{dx}$ in the following equations:

(i)
$$y = \frac{e^x \sqrt{\cos x}}{(2x+3)^2}, \text{ when } x = 2\pi.$$

(ii)
$$yx^2 - y^2x + 5y - 20x = 14$$
.

- (b) Differentiate the function $f(x) = 4x^3 + 3x 4$ from first principles.
- (c) A 13 m long ladder leans against a wall. The bottom of the ladder is pulled away from the wall at the rate of 6m/s. How fast does the height on the wall decrease when the foot of the ladder is 5 m away from the base of the wall?
- 5. (a) Evaluate the following integrals:

$$\int_{0}^{0.5\pi} \cos^3 x dx,$$

- (b) The slope of a curve at any point is defined by the equation $\frac{dy}{dx} = 3x \frac{1}{x^2}$, where $x \neq 0$. Find the equation of the curve.
- (c) The area bounded by the lines y = mx, y = h, y = 0 and x = 0 is rotated about y axis. If x = r when y = h. Find the volume of the figure generated in terms of h and r.
- 6. (a) Define the following terms as they are used in statistics:
 - (i) Range,
 - (ii) Class size.
 - (b) The manager of Gold Mining Company recorded the number of absent workers in 52 working days as shown in the table below;

Number of absent workers	5-9	10-14	15-19	20-24	25-29
Frequency	6	9	18	16	3

Use these data to construct the cumulative frequency curve.

(c) The following data shows time in seconds which was recorded by a teacher in a swimming competition of students from Precious Beach High School.

3/2	31	27 31 24 29	30	29	27	25	29	26	26	32
32	25	31	31	27	24	26	26	32	33	28
26	3/3	24	28	B2"	29	32	24	3.1	271	30
31	25	25	25	27	80	26			1.00	

- (i) Prepare the frequency distribution using the class intervals of 0-4, 5-9 etc.
- (ii) Determine the standard deviation.

- 7. (a) If P(n,4) = 42P(n,2)
 - (i) Find n,
 - (ii) Evaluate P(n, 2) and P(n, 4).
 - (b) Events A, B and C are such that A and B are independent, while B and C are mutually exclusive. If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$ and $P(C) = \frac{1}{3}$, find;
 - (i) $P(A \cap B)$,
 - (ii) $P(A \cup B)$,
 - (iii) $P(A \cup C)$.
- 8. (a) (i) Express $\sin 3\theta$ in terms of $\sin \theta$.
 - (ii) Show that

$$\sqrt{\frac{(1-\cos\phi)}{1+\cos\phi}}=\cos ec\phi-\cot\phi.$$

(b) Given the figure below,

- (i) Determine the values of x and y,
- (ii) Find $\sin(\hat{QPA})$.

- 9. (a) (i) Find a if $2^{2a+8} 32(2^a) + 1 = 0$.
 - (ii) If $2\log_8 N = p$, $\log_2 2N = q$, and q p = 4, Find N.
 - (b) Given the system of linear equations below,

$$x+y+z=7$$
$$x-y+2z=9$$
$$2x+y-z=1$$

- (i) Write the system of equations in matrix form.
- (ii) Find the determinant and the inverse of the matrix.
- (iii) Determine the values of x, y and z.
- 10. (a) Define the following terms:
 - (i) Linear programming
 - (ii) Constraints.
 - (b) A trader has 15000, 9000 and 1920 units of ingredients X, Y and Z for production of cakes and loaves. The requirements of units of a loaf of bread and a cake are indicated in the table below.

Foodstuffs	Units				
	X	Y	Z		
Bread	25	10	30		
Cake	15	18	30		

A loaf of bread is sold at 4200/- shillings and a cake is sold at 2000/- shillings.

- (i) Sketch the graph to illustrate this information.
- (ii) What is the maximum amount of money obtained if both cakes and loaves of bread must be prepared?
- (iii) How should the trader do to obtain that maximum profit?