THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/1

CHEMISTRY 1 (For Both School and Private Candidates)

Time: 2 Hours 30 Minutes Tuesday 19th February 2008 a.m.

Instructions:

- This paper consists of fourteen (14) questions in sections A, B and C
- Answer four (4) questions from section A and three (3) questions from each of sections B and C.
- Mathematical tables and non programmable calculators may be used.
- Cellular phones are not allowed in the examination room.
- Write your Examination Number on every page of your answer booklet(s)
 - For your calculations you may use the following constants:
 - P_{eff} (Rydberg constant) = 1.097 x $\pm 0^7$ m⁻⁷ **(i)**
 - Speed of light $C = 3.0 \times 10^8 \text{ m/s}$ (ii)
 - (iii) Planck's constant, = $6.63 \times 10^{-34} J/S$
 - Molar gas constant $R = 8.314 \text{ Jmol}^{\circ} \text{ K}^{-1} \text{ or } 0.0821 \text{ atm mol}^{-1} \text{ K}^{-1} \text{ L}$ (iv)
 - Atomic masses: H = 1, O = 16, S = 32, C = 12, (v)

This paper consists of 7 printed pages

SECTION A (20 marks)

Answer four (4) questions from this section

Ť	(a)	Define the following terms (i) Radioactive decay (ii) Radioactive isotope (iii) Radioactivity (03 marks)				
	(b)	7. radioactive isotope of the element $\frac{226}{88}$ Ru decays according to				
		following scheme				
	$\frac{226}{88}$ Re $\frac{2\beta}{\text{emission}}$ particles α particle α particle α particle α particle α					
		Deduce the atomic number and mass of F. G and H (03 mar)				
	(c)	the mass number of two atoms X and Y with the same atomic number 206 and 203, respectively. If X contains 124 neutrons in its nucleus, the number of neutrons in the nucleus of Y. What is the atomic number Y? (04 marks)				
2.	(č.)	Write short notes on the following:				
	107	(i) Hydrogen bonding (ii) Van der Waals forces (iii) VSEPR theory (03 marks)				
	(b)	Use the VSEPK theory to predict the molecular geometry of the follow species:				
		(i) ⁹ Ci, (ii) SO, (iii) CS ₂ (iv) SO ₄ ² - (04 mar				
	(c)	Explain why CO ₂ is a non-potat molecule while SO ₂ is polar despite fact that both have the same empirical formula (01 ward				
	(a)	dealthe the frequency, of the recond line in Brackett series (02 m				
4	(2)	Defin: Resoult's Law of yapour pressure (91 m)				
	(b)	Heptage and octane form an ideal solution. Give a mathematical expression for Rapult's vapour pressure law for a solution containing heptane and octane. (0.2 mark				
		2				

- (c) (i) Under what circumstances will two liquid mixtures behave as an ideal solution? (Circ three (3) conditions) (03 marks)
 - (ii) Calculate the vapour pressure of a solution containing 50 g of heptane (C₂H₁₆) and 38 g of octane (C₈H₁₈) at 20 °C. Vapour pressures of heptane and octane at 20 °C are 47.32 Pa and 139.8 Pa, respectively (04 marks)
- (a) Define the following terms:
 - Le Chatelier's principle.
 - (ii) Reversible reaction
 - (iii) Law of mass action
 - (iv) Catalyst.

(04 marks)

- (b) Explain briefly how temperature affects the equilibrium reaction.
- (c) In an experiment, 0.206 moles of hydrogen and 0.144 moles of iodine were heated (at 723 K) to equilibrium in the reaction H₂ + I₂ 2HL

0.258 moles of hydrogen iodide was formed. Calculate the equilibrium constant of the reaction. (04 marks)

(a) The atomic nuclei of isotopic atoms X and Y contain the following.

X = 3 neutrons and 8 protons.

Y 20 neutrons and 19 protons

Write the

C DE

- (i) Mass number of X and Y
- (ii) Atomic number of X and Y
- (iii) Electronic configurations of X and Y.
- (iv) Groups and periods in the periodic table of elements to which X and Y belong
- (v) Most probable exidation states of X and Y.
- (vi) Possible chemical formula for a compound formed between X and Y (07 marks)
- (b) The energy of the electron in a hydrogen atom when it is in the ground state is given by

$$E_1 = -2.178 \cdot 10 \left(\frac{1}{n_1^2} \right)$$
 Joules

The energy of the same electron if it occupies a higher energy level (n =2) is given by

$$L_2 = 2.178 \times 10 \left(\frac{1^2}{n_2^2}\right)$$
 Joules

Calculate the energy, in joules, and the wavenumber, in metres, of the light which must be absorbed by a hydrogen atom to excite its electron from n = 1 to n = 2. (03 marks)

- (a) What do you understand by the following terms?
 - (i) Mole
- (ii) Mole fraction
- (iii) molarity

- (iv) Molality
- (v) Normality

- (05 marks)
- (b) Sulpharic acid solution containing 571.6 g of H₂SO₄ per dm³ of solution at 20 °C has a density of 1 3294 g/ml. Calculate the
 - (i) Molarity of sulphuric acid
 - (ii) Percentage by mass of H2SO4
 - (iii) Mole fractions of the solution components.

(05 marks)

SECTION B (30 marks)

Answer three (3) questions from this section.

- 7. (a) Give three (5) reasons to support hydrogen being grouper in group seven together with helogens in the periodic table (02 marks)
 - (b) Give four (4) diagonal similarities between aluminium and beryllium.
 (62 marks)
 - (c) Explain the following chemical phenomena using equations or other illustrations whenever possible
 - (i) Aluminium chloride is a good Lewis acid.
 - (ii) Concentrated pitric acid renders aluminium passive
 - (iii) The relative molecular mass of aluminium chloride in the vapour frate is twice the expected value (06 marks)
- 8 (a) Write balanced chemical equations for the following reactions
 - Excess carbon dioxide is bubbled in sodium hydroxide solution.
 - (ii) Excess sulphune acid is added to sodium sulphate solution
 - (iii) A white precipitate is observed when sodium sulphate solution is added to berium chloride solution in the presence of hydrochloric acid (06 marks)

4

- (b) (i) What is the difference between hydrolysis and hydration?
 - (ii) Give two (2) supporting reaction equations to show clearly the contrast between hydrolysis and hydration (03 marks)
- (c) Elements in group I and group II are normally extracted by electrolysis of their fused chlorides Explain why? (01 mark)
- (a) What do you understand by the following terms:
 - (i) Mole
 - (ii) Avogadro's constant.

(02 marks)

(b) SO₂ is used in the manufacture of sulphuric acid and it is obtained from sulphide ores.

$$4\text{FeS}_{2_{(1)}} + 110_{2_{(2)}} \rightarrow 2\text{Fe}_{2}O_{3_{(1)}} + 8\text{SO}_{2}(g)$$

Find the mass of oxygen, in grams, reacting when 751 of SO₂ is produced at 100 °C and 1.04 atm (04 marks)

- (c) A mixture of 5.0 g of sodium carbonate and sodium bicarbonate is heated. The loss in mass is 0.31 g. Calculate the percentage by mass of sodium carbonate in the mixture (04 marks)
- 10 (a) With two (2) examples in each case, explain the terms:
 - Cationic complexes
 - (ii) Anionic complexes
 - (iii) Neutral complexes.

(04½ marks)

- (b) (i) Give all the isomers of CoCl₃.6NH₃.
 - (ii) Addition of excess of silver nitrate solution to an aqueous solution containing 0.01 M of CoCl₃.6NH₃ leads to an immediate precipitate of 0.03 M of silver chloride. What is the structure of CoCl₃.6NH₃?

(021/2 marks)

- (c) With the help of equations explain what happens when
 - (i) an acid is added to a chromate (VI)
 - (ii) a base is added to a dichromate (VI)

(03 marks)

05

SECTION C (30 marks)

Answer three (3) questions from this section

11	(a)	Write the structural formular for the following compounds			
		(i)	2. 3 – dibromopentane		
		(ii)	3. 3 - dimethylheptane		
		(iii)	3. 3 - dichlorobutan - 1.3 - diene	(02 marks)	
		(iv)	1, 4 - hexadiene		
	(b)	Write an equation for the reaction of propylene with each of the following			
		(i)	Hydrogen bromide in presence of Peroxide.		
		(ii)	H₂O, H'		
		(iii)	Hot Cone alkaline KMnO4 followed by acidific	cation	
		(iv)	Cl ₂ , uv light.		
		(v)	Br ₂ /CCl ₄ solution.	(08 marks)	
12	(a)	For each of the following pairs of alcohols suggest one observable distinguishing test			
		(i)	CH ₃ CH ₂ CH ₂ – OH and CH ₃ CH ₂ OH CH ₃		
		(ii)	CH ₃ - C - OH and 2-methylpropan-1-ol		
			ČH ₃	(03 marks)	
	(b)	(1)	Which alcohol will be made if pentar 3 - one Li AlH ₄ ?	is reacted with	
		(ii)	What will be the products of the following reac	tion?	
			Pent - ? - ene $\xrightarrow{\text{Conc } H_2SO_4}$ $\xrightarrow{\text{H}_2O}$	(03 marks)	
	(c)	An alcohol B reacts with cone. H ₂ SO ₄ at 1791 °C to form an alkene Q. O reacts with ozone, zinc dust and water to give propanone and ethanal			
		(i) (ii)	Deduce the structural formulae of thand B. Cave balanced equations for the formulae of a mentioned		
13	(a)	You are provided with the following pairs of organic compounds. We compound has higher boiling point in each pair? Give reasons for yechoice		compounds Whice reasons for your	

(i) CH₄CH₂OH and CH₄OCH₄

- (iii) CH3CH2CH2CH3 and CH3CH2CH2CH2CH5
- (iv) CH₃CH₂CH₂CH₂CH₁ and CH₃-C-CH₃ (08 marks)
- (b) Arrange the following compounds A, B and C in order of increasing acidic strength, and give reasons for your order

- (a) With the help of chemical equations, explain the following observations.
 - Nitration of methylbenzene gives ortho and para nitromethylbenzene
 - (ii) Addition of methyl group to nitrobenzene gives meta nitromethylbenzene (05 marks)
 - (b) Give the systematic IUPAC names of each of the following compounds:
 - (i) CHCl₃

(05 marks)

AC DE

Find more free educational resources at http://maktaba.tetea.org