THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION # CHEMISTRY 2A ALTERNATIVE A PRACTICAL (For both School and Private Candidates) Tuesday, 12th October 2010 a.m. Instructions This paper consists of three (3) questions s paper consists of three (3) questions. Answer two (2) questions including question number 1. Qualitative Analysis Guidance Pamphlets may be used after a thorough check by the supervisor: egen-2010 asan-2010 asan-1010 asan-2010 asan-2010 asan-2010 asan-2010 asan-2010 asan-2010 Calculators and cellular phones are not allowed in the examination room. Write your Examination Number on every page of your answer booklet(s). The following constants may be used. Atomic masses: H = 1, C = 12, O = 16, Cl = 35.5, Na = 23, K = 39. 1 litre = $1 \text{ dm}^3 = 1000 \text{ cm}^3$. This paper consists of 3 printed pages. 1. You are provided with the following: Solution ${f D}$ containing 6.90 g of T_2 CO_3 per 0.50 dm 3 of solution Solution N containing 1.55 g of hydrochloric acid per 200 cm³ of solution Methyl orange indicator solution. ## **Procedure** Put solution N in the burette. Pipette 20 cm³ (or 25 cm³) of D into a titration flask. Add drops of methyl orange indicator. Titrate solution N from the burette against solution D titration flask to the end point. Note the burette reading. Repeat the procedure to obtain more values and record the results as shown in the following table. - (a) Table of results - (i) Burette readings | Titration | Pilot | 1 | 2 | 3 | |------------------------------------|-------|---|---|---| | Final reading (cm ³) | | | | | | Initial reading (cm ³) | | | | | | Volume used (cm ³) | | | | | - (ii) The volume of the pipette used was ____ cm³. - (iii) The volume of the burette used was ____ cm³. - (iv) ____cm³ of solution D required ____ cm³ of solution N for complete reaction. - (v) The colour change at the end point was from ______ to ____. - (b) Write a balanced equation for the above neutralization reaction. - (c) Calculate the following: - (i) molarity of acid solution N - (ii) molarity of the base solution D - (iii) molecular weight of T₂ CO₃ - (iv) atomic mass of element T. - (d) Identify element T in T_2CO_3 . (25 marks) Sample **B** is a simple salt containing **one** cation and **one** anion. Carry out the experiments described in the following table carefully and record all your observations and appropriate inferences. Identify the cation and anion present in sample **B**. | | Experiment | Observation | Inference | |-----|--|-------------|-----------| | (a) | Appearance of sample B. | | | | (b) | Put a spatulaful of sample B in a test-tube. Add water until half test-tubeful. Stir and divide the solution into five portions in different test tubes and then do the following: (i) add fresh zinc metal granules to the first portion. Heat for a while. Decant the result. Pour the solid material onto a filter paper and | | | | | observe. Let it dry, then observe again. (ii) add NaOH solution until excess to the second | | | | | portion then heat and observe again. (iii) add ammonia solution dropwise to the third portion until excess. | | | | | (iv) add AgNO ₃ solution to the fourth portion followed by dil. HNO ₃ . | | | | | (v) add AgNO ₃ solution to the fifth portion followed by ammonia solution. | | | | Co | ทดเ | HICH | nn | |-----|-----|------|----| | CU. | ц | .usi | | 2. | (a) | The cation present in the sample B is | and the anion is | | |-----|---------------------------------------|-------------------|--| | | | and the annull is | | - (b) What has been happening in the experiments (b) (i) and (b)(ii)? Use reaction equations where possible. (25 marks) - 3. Substance Z contains **one** basic radical and **one** acidic radical. Using systematic qualitative analysis procedures carry out experiments on sample Z and make appropriate observations and inferences to identify the radicals. | Observation | Inference | | |-------------|-------------|--| | | | | | | | | | | Observation | | ### Conclusion The Basic radical in sample Z is _____ and acidic radical is ____. (25 marks)