THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 2:30 Hours

Wednesday, 14th November 2018 a.m.

Instructions

- This paper consists of three (3) questions. Answer all questions.
- 2. Question 1 carries twenty (20) marks and the rest carry fifteen (15) marks each.
- 3. Qualitative Analysis Guidance Pamphlets may be used after a thorough check by a supervisor.
- Cellular phones, calculators and any unauthorized materials are not allowed in the examination room.
- Write your Examination Number on every page of your answer booklet(s).
- 6. You may use the following constants:

$$H = 1$$
, $C = 12$, $O = 16$, $Na = 23$, $S = 32$.
1 litre = 1 dm³ = 1000 cm³.

You are provided with the following solutions:

X: A 0.5 M sulphuric acid solution;

Y: A monovalent metal hydroxide made by dissolving 4.00 g of MOH in distilled water to make up to 1000 cm³ of solution;

MO: Methyl orange indicator.

Procedure

- (i) Measure exactly 20 cm³ of X by using 100 cm³ measuring cylinder. Carefully add distilled water to 100 cm³ mark then stir. Call this solution X₁. Fill X₁ into a burette.
- (ii) Titrate X₁ against 20.00 cm³ or 25.00 cm³ of Y using two drops of the indicator; obtain three accurate values. Record your results in a tabular form.

Questions

- (a) (i) The colour change at the end point was from _____ to ____.
 (ii) ____ cm³ of Y required ____ cm³ of X₁ for complete reaction.
- (b) Write a balanced chemical equation for the reaction between X₁ and Y.
- (c) Calculate the following:
 - (i) Molarity of X1 and of Y;
 - (ii) Molar mass of Y:
 - (iii) Atomic mass of M.
- (d) Identify metal M and write its electronic configuration.
- (e) State two properties of each of X and Y.
- You are provided with the following:

H₁: A solution of 0.25 moldm⁻³ Na₂S₂O₃;

H₂: A solution of 2 M HCl;

Distilled water; stop watch; thermometer and a plain paper marked X.

Procedure

Place 150 cm³ of water in the 250 cm³ beaker and use this as your water bath; heat the water to 80°C. Measure 10 cm³ of H₁ and 25 cm³ of water and pour the contents into the 100 cm³ beaker. Put the beaker with the contents into a hot water bath. When the contents attain a temperature of 70 °C, place the beaker on top of the mark X on the paper provided. Add 10 cm³ the beaker so as to see X through the bottom of the beaker twice and look vertically on top of Record the time taken for X to disappear completely. Repeat the experiment at different temperatures as shown in the Table 1.

Table 1

Exp. No.	Temperature of H ₁ (°C)	Time (sec)	Rate - (s-1)
	70	1	
2	60		
3	50		
4	40		
5	Room temperature	The second second second	

Que	stions
(a)	Fill Table 1.
(b)	Write a balanced equation for reaction between H1 and H2.
(c)	Which product causes the solution to cloud the letter X?
(d)	Plot a graph of rate (-) against temperature.

(e) What conclusion can you draw from this experiment?

Sample N is a simple salt containing one cation and one anion. Carefully carry out all the
experiments described in Table 2. Record all your observations and make appropriate
inferences to identify the cation and anion present in sample N.

Table 2

S/N	Experiments	Observation	Inference	
(a)	Appearance of the solid sample N.			
(b)	Put a spatulaful of the sample N in a test tube and heat.			
(c)	Add dilute hydrochloric acid to the solid sample N.			
(d)	Perform flame test on the sample.			
(e)	Dissolve the sample in water. Divide the resulting solution into two portions:			
	(i) Add sodium hydroxide to the first portion.			
	(ii) Add few drops of magnesium sulphate solution to the second portion, then warm.			

Con	clusion					
(i)	The cation is	and the anion is				
2224	mt - someta Nic					
(iii)	Write chemical equations (with state symbols) to show reactions which took place in the					
	experiments (b) and					
(iv)	Describe three uses of					