THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2B

CHEMISTRY 2B ACTUAL PRACTICAL B

(For Both School and Private Candidates)

Time: 2:30 Hours

Monday, 13th November 2017 a.m.

Instructions

- 1. This paper consists of **three** (3) questions. Answer all the questions.
- 2. Question 1 carries twenty (20) marks and the rest carry fifteen (15) marks each.
- 3. Qualitative Analysis Guidance Pamphlets may be used after a thorough check by the supervisor.
- 4. Cellular phones, calculators and any unauthorized materials are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- 6. You may use the following constants:

Atomic masses:

$$H = 1$$
, $O = 16$, $Na = 23$, $S = 32$.
1 litre = 1 dm³ = 1000 cm³.

- 1. You are provided with the following:
 - S: A solution containing 0.125 M sulphuric acid (H_2SO_4);
 - T: A solution made by dissolving 15 g of impure sodium hydroxide (NaOH) in distilled water making up to 1000 cm³ of the solution;

M.O:Methyl orange indicator.

Ouestions

- (a) (i) Titrate S (from the burette) against T (in the titration flask) using MO up to the end point. Repeat the procedure to obtain three accurate readings and record your results in a tabular form.
 - (ii) Calculate average volume of S used.
 - (iii) ____ cm³ of T required ___ cm³ of S for complete reaction.
 - (iv) The colour changed at the neutralization point was from _____ to ____.
- (b) Write a balanced chemical equation for the reaction taking place between S and T.
- (c) Calculate the percentage purity and percentage impurity of sodium hydroxide.
- 2. You are provided with the following:
 - Solution M: 0.2 M sodium thiosulphate (Na₂S₂O₃);
 - Solution N: 2 M hydrochloric acid (HCl);
 - Distilled water labeled W;
 - A sheet of white paper marked X;
 - Stop watch.

Procedure

- (i) Put a small beaker (100 cm³) on top of the mark X on a sheet of paper in such a way that the mark is clearly seen through the top of the beaker.
- (ii) Measure 50 cm³ of solution M and pour into a small beaker.
- (iii) Using different measuring cylinder measure 10 cm³ of solution N.
- (iv) Start a stop watch simultaneously as you pour solution $\mathbb N$ in the beaker containing solution $\mathbb M$
- (v) Stir the mixture with glass rod until the cross disappears.
- (vi) Stop the watch when the cross is out of sight. Record the time taken.
- (vii) Repeat the whole process using 40 cm³, 30 cm³, 20 cm³ and finally 10 cm³ of solution M as shown in the Table 1. Top up solution M with W to make 50 cm³ in each experiment before adding solution N.

Table 1

Volume of M (cm ³)	Volume of water (cm ³)	Volume of N (cm ³)	Conc. of M after adding water (moldm ⁻³)	Time for cross to disappear (sec.)	Rate (sec ⁻¹)
50	00	10			
40	10	10			
30	20	10	1 1111111		
20	30	10			
10	40	10			

Questions

- (a) Complete filling the Table 1.
- (b) Write down a balanced chemical equation for the reaction between M and N.
- (c) What substance was produced during the reaction which obscured the cross?
- (d) Use the data in the Table 1 to draw the following graphs:
 - (i) Concentration-time graph; concentration on the y-axis and time on the x-axis.
 - (ii) Concentration-rate graph, concentration on the y-axis and rate on the x-axis.
- (e) What conclusion can you draw from the results of the experiment?
- 3. Sample **H** contains one cation and one anion. Using systematic qualitative analysis procedures record carefully your experiments, observations and inferences as Table 2 shows. Finally, identify the anion and cation present in sample **H**.

Table 2

S/n	Experiment	Observation	Inference
		İ	

		1		lusion			
ß.	്ഹ	ıΥ	and the	ER	C.H	ABBB	•

- (i) The cation in sample **H** is _____.
- (ii) The anion in sample **H** is _____.