THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

082

ELECTRICAL ENGINEERING SCIENCE (For Both School and Private Candidates)

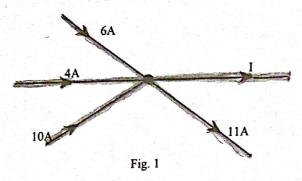
Time: 3 Hours

Tuesday November 9, 2004 p.m.

Instructions

- This paper consists of sections A, B and C.
- 2. Answer all questions in sections A and B and three (3) questions from section C.
- Cellular phones are not allowed in the examination room.
- Electronic calculators are not allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).

This paper consists of 4 printed pages.


SECTION A (10 marks)

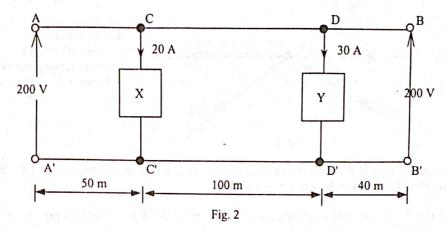
Il questions in this section.

i) '	The S	S.I. unit of th	e lumino	ous flux is								
	A	candela		lumens	С	lux	D 1	lumen	per watt	E	weber.	
ii)	Whe	n the length	of a cond	luctor is i	ncrease	d its resis	tance					
	A D	increases remains co		B E		mes zero			С	dec	reases	
(iii)	A cu	rrent of 5A	flows in	a 10-ohm	resisto	r for 10 n	ninute	s. Th	e energy o	onsum	ed is	
	Α	150 J	В	250 J	C	2500 J		Ŋ,	150 KJ	E	25 KJ	
(iv)	Four para	(4) cells ead llel. Its equ	ch of e.n ivalent i	n.f. of 1.5 internal res	V and i	internal re	esistar	nce of	1.2 ohms	, are co	nnecte	d in
	Α	4.8	В 0	.6	C	0.3		D	1.2/	E	3.6	
(v)	The	efficiency o	f a trans	former ha	ving no	losses is						
	A D	zero minimum		B E	un . lov	ity west.			C	max	cimum	
(vi)	The	mounting h	eight of	a lamp ha - m.	ving 1	00 c.d. an	nd giv	ing the	illumina	tion of	25 lux	•
	A	1.0	В	10	C	4.0		D	2.0	I	3 3	3.5
(vii)	Giv	en that, the	maximu	m power	in an a.	c. circuit	is 10	0 W, i	ts r.m.s. v	alue is	\	V .
	Α	70.7	В	100	С	7.07		D	707		E 80	.5
(viii)	Ad	l.c. motor th	at is not	allowed	to run v	vithout lo	ad is	a	motor.			
	A E	series parallel	I	3 shu			oulsion			pound		
(ix)	A of	coil having a frequency o	resistar f 50 Hz,	nce of 10 has a rea	ohms a	nd induc	tance	of 0.5	henry, c	onnect	ed to a	suppl
	A	75	В	150	(C 157	7	D	314		Е	212
(x)	Th	e phase volt	age of a	certain c	ircuit is	s 231 V.	Its li			nrovi-		
	A	133	В	400		C 23		voi		proxim		
				SEC		B (30 m			250		Е	240
				220	· ioi	D (30 III	arks)					

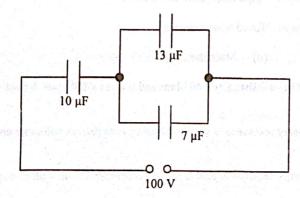
remaining three (3) factors.

- 3. The current supplied to a certain load is given by i = 25 sin 314 t (Amps). Calculate:-
 - (a) The frequency of the supply.
- b) The maximum current supplied.
- 4. A 1.0 kW kettle contains 1.0 litres of water at 15°C. If the efficiency of the kettle is 0.85 per unit, what will the time for the water to boil be? Assume 1 litre = 1 kg and the specific heat capacity of water as 4.2 J/gk. (time in minutes).
- 5. (a) What instrument is used to measure the specific gravity of a battery?
 - (b) Name two (2) defects of a primary cell.
- 6. (a) State Kirchhoff's current law.

(b) Calculate the value of current I in the circuit given in Figure 1.


- 7. A wire, 0.2 m long, is moved at a speed of 2 m/s across a magnetic flux density of 0.2 T. What will the induced emf in the wire (in mv) be?
- 8. What is the cost of using an electric motor rated at 250 V, 3 kW for 10 hours, if the cost of electric energy is shs. 30 per unit?
- 9. The slip of an a.c. machine is 4 %. If the frequency of the rotor current is 2.4 Hz, what will the frequency of the supply be?
- 10. A 16 c.d. lamp is kept 4 m from the screen of a photometer bench. Calculate the distance of the second lamp of 100 c.d., kept on another side of the screen, so that the illuminations on both sides of the screen are equal.
- 11. Convert the following units into the convenient units stated in standard form.
 - (a) 20 µA into mA
- (b) 15 pF into μF
- (c) 7500000 cm into km.

SECTION C (60 marks)


Answer three (3) questions from this section.

- 12. (a) Define the following terms as referred to instruments:
 - (i) Shunt.
- (ii) Multiplier.
- (b) A moving coil instrument has a resistance of 40 ohms and it gives a full scale deflection on a current of 20 mA.
 - (i) Calculate the necessary resistance to enable the instrument read as voltmeter up to 100 V.
 - (ii) Calculate the resistance required to enable the instrument read as an ammeter up to 100 A.

- 13. (a) Name the three (3) types of self excited d.c. motor in use.
 - (b) A short shunt compound motor takes 20 A from a supply of 200 V. If its series field, armature and shunt field resistances are 0.5 Ω , 0.2 Ω and 190 Ω respectively, calculate the
 - (i) Shunt field current.
 - (ii) Armature current.
 - (iii) Emf generated.
- 14. A twin core cable is supplied on both ends and is used to supply currents to the loads X and Y as shown in figure 2 below. If the resistance per 100 m run of a single core is 0.1 Ω , calculate the p.d. across each load point.

- 15. An a.c. motor develops a power of 40 kW with an efficiency of 80 % when rotating at a speed of 1450 r.p.m. Assuming a slip of 4 %, calculate the:
 - (a) Power input to the motor.
 - (b) Synchronous speed of the motor.
- 16. (a) Define the term 'capacitance' as applied to capacitors and state its SI units.
 - (b) In the given circuit below, calculate the:
 - (i) Equivalent capacitance.
 - (ii) Total charge supplied in (μC).

