

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

035

ENGINEERING SCIENCE (For Both School and Private Candidates)

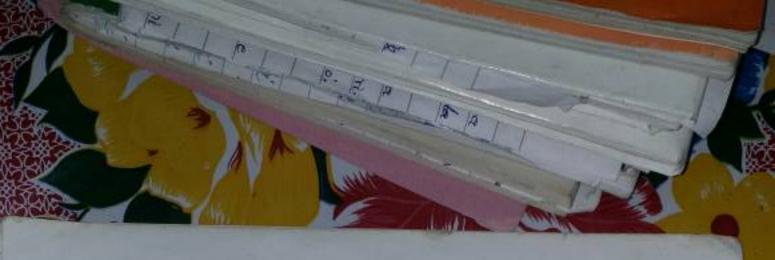
TIME: 3 Hours

Friday morning 19/10/2007

Instructions

- 1. This paper consists of sections A, B and C.
- Answer all questions in sections A and B and three (3) questions from section C.
- Slide rules and mathematical tables may be used when necessary.
- 4. Electronic calculators are not allowed in the examination room.
- Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- Where necessary use: acceleration due to gravity, g = 9.8 m/sec.²

This paper consists of 5 printed pages.


545

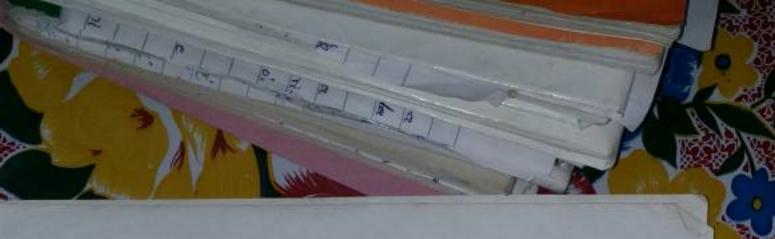
SECTION A (10 marks)

Answer all questions in this section.

- For each of the items (i) (x) choose the correct answer from among the given alternatives and write its letter beside the item number.
 - (i) To raise a load of 280 N through a vertical distance of 1 m a machine required 600 J. What is the efficiency of the machine?
 - A 21.4%.
 - B 46.7 %.
 - C 4.67 %.
 - D 2.14 %.
 - E 0.467 %.
 - (ii) If a uniform rod 1.0 m long of mass 100 g is supported horizontally on two knife edges placed 10.0 cm, from its ends, the reaction at the support when a 150 g mass is placed at the midpoint of the rod will be
 - A 250 g
 - B 125 g
 - C 125 dynes
 - D 1.225 N
 - E 2N.
 - (iii) The relation between volume and temperature at constant pressure is known as
 - A pressure law
 - B Boyle's law
 - C Charle's law
 - D avogadro's law
 - E gas law.
 - (iv) Thunder is heard 5 seconds after the lighting flash is seen. How far away is the centre of the electrical storm? (velocity of sound = 330 m/sec).
 - A 1650 m
 - B 1700 m
 - C 1600 m
 - D 1550 mm
 - E 1800 m.
 - (v) In a simple electric motor, the commutor
 - A changes the current direction in the coil
 - B reverses the battery poles
 - C connects the brushes together
 - D reverses the current in the battery
 - E changes the current strength in the coil.

- (vi) Liquid x needs 2000 J to be heated through 5 °C. An equal mass of water with specific heat 4200 J/kg °C needs 6000 J to be heated through 10 °C. The specific heat capacity of x in J/kg °C is
 - A
 - B 1400
 - C 1000
 - D 700
 - E 420.
- (vii) The property of a material to recover its original shape and size on removal of distorting force is called
 - elasticity
 - plasticity B
 - C Hooke's law
 - D cohessivity
 - E Young's modulus.
- (viii) If the e.m.f. and internal resistance of a battery is 1.5 V and 0.4 Ω respectively, the current supplied through a 14.6 Ω is
 - 15 A
 - B 10 A
 - C 1A
 - D 0.1 A
 - 2.0 A.
- (ix) A boy whose weight is 600 N runs up a flight of stairs 10 m high in 12 sec. The average power he develops in watts, is

 - B 720
 - C 7200
 - D 500
 - 1000. E
- Under constant tension, the note produced by a plucked string is 180 Hz (x) when the length is 90 cm. At what length is the frequency 120 Hz?
 - 13.5 cm.
 - 1.35 m. B
 - C 1.35 cm.
 - D 60 cm.
 - 60 m.



SECTION B (30 marks)

Answer all questions in this section. All working for each question must be shown clearly.

- A barge, 180 cm long and 70 cm broad whose sides are vertical, floats in water when partially loaded. If 37800 g of cargo is added, what height will it sink?
- Convert the standard pressure of 76 cm of mercury to N/m² given that the density of mercury is 13600 kg/m³.
- 4. How many kilograms of copper can be raised from 15 °C to 60 °C by the absorption of 80 kJ of heat assuming the specific heat of copper is 390J/kg °C?
- A direct tensile force of 50 N is applied to a wire of diameter 2 mm. Find the tensile stress of the wire.
- 6. Distinguish between a voltmeter and a voltameter.
- 7. What physical quantities are measured by the following units?
 - (a) Farad.
 - (b) Henry.
 - (c) Webber/m2.
- An aluminium rod is 20 m at 15 °C. At what temperature will its length be 20.096 m? (coefficient of linear expansion of aluminium = 2.4 x 10⁻⁵/ °K).
- 9. A coil of a very fine copper wire is found to take a current of 0.75 A when a p.d. of 4.5 V is applied. If a wire has a resistance of 1.5 Ω per metre, what length of the wire is in the coil?
- 10. Distinguish between sensible heat and latent heat.
- The tension that occurs on a piano is AN when the frequency is 400 kHz. Calculate the tension needed to produce a note of frequency 600 kHz.

545

SECTION C (60 marks)

Answer three (3) questions from this section.

Dry steam is passed into a well-lagged copper can of mass 250 g containing 400 g of water and 50 g of ice at 0 °C. The mixture is well stirred and the steam supply cut off when the temperature of the can and its contents reaches 20 °C. Neglecting heat loss, find the mass of steam condensed.

Specific heat capacities:

water = 4.2 J/g °C

copper = 0.4 J/g °C

Specific latent heats:

steam = 2260 J/g

ice = 336 J/g.

- 13. An object is placed
 - (a) 20 cm.
 - 5 cm from a converging lens of focal length 15 cm.

Find the nature, position and magnification of the image in each case. (Use Real is - positive convention).

14. The circuit below shows a 12 V battery of internal resistance 0.6 Ω connected to three resistors A, B and C. Find the current in each resistor.

- Define magnetic flux. 15. (a)
 - A coil of 2000 turns gives rise to a magnetic flux of 4 m Wb when carrying a (b) current of 5 A. What will be the average e.m.f. induced in the coil, if a current of 5A in it is reversed in direction in one-tenth of a second?
- Draw a diagram of a single pulley system with a velocity ratio of 6. 16. (a)
 - Calculate the efficiency of the pulley in 16(a) above if an effort of (b) 1000 N is required to raise a load of 4500 N.
 - Find the energy wasted when a mass of 500 kg, is lifted by the pulley (iii) in 16(a) above through 2 m.

