THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/1 **PHYSICS 1**

(For Both School and Private Candidates)

TIME: 3 Hours 8 November 2000 A.M.

Instructions

- 1. This paper consists of sections A, B and C.
- 2. Answer ALL questions in Section A and B and any FOUR questions from Section C.
- 3. Write your answers neatly and systematically in the answer booklet(s) provided.
- 4. Marks for questions or part thereof are given in parentheses.
- 5. Write your examination Number on every page of your answer booklet(s).
- 6. Wherever necessary use the following constants:

Acceleration due to gravity, $g = 10 \text{m/s}^2$

SECTION A (15 Marks)

Answer ALL questions in this section. Each item carries 1 mark.

Write the letter of the best answer in the answer booklet.

1.	(i)	A vernier scale reads -0.2 mm when closed and 5.7 mm when used to measure the diameter of a piece of wire. What is the true diameter of the wire?							
		A.	0.2 mm	B.	5.9 mm	C.	5.5 mm	D.	5.7 mm
	(ii)	Whic	ch of the follow	ing three	quantities are	vectors?			
		A.	Force, work	and ener	·gy				
		B.	Weight, wo	rk and po	wer				
		C.	Velocity, ac	celeration	n and power				
		D.	Displaceme	ent, veloci	ty and moment	tum.			
	(iii)	A bus which is heavily overloaded on its basement carrier is unlikely to overturn							
		A.	it will run fa	ast downl	nill				
		B.	its centre of	gravity i	s high				
		C.	its centre of	-	•				
		D.	its equilibri	um is neu	tral.				
	(iv)	The	at mercury						
		A. has high B.P, coloured and does not stick to the wall							
		B.	is very sens	itive to he	eat, has low B.	P and colo	oured		
		C.	is colourles:	s, has hig	h B.P, and doe	s not stick	to the wall		
		D.	is sensitive,	has low l	B.P. and does r	not stick to	the wall.		
		E.	Atomisation	1.					
	(v)	The	basic condition	for diffra	action of a wave	e to occur	is that the		
		A.	wave must	travel at a	high speed				
		B.	width of the	slit is ab	out the same si	ze as the v	wavelength of t	he wave	
		C.	wavelength	of the wa	eve must be gre	eater than t	the size of the s	slit	
		D.	wavelength	of the wa	ave must be gre	eater than t	the size of the s	slit	
	(vi)		t will happen to e its cap? The l		of a negatively	charged l	eaf electroscop	e if alpha j	particles
			•						
		A. B.	rise further	-	up				
		В. С.	fall and stay rise further		fo11				
		C.	1186 Tul ulel	and their	1411				

fall and then rise again.

D.

- (vii) The galaxy in which the solar system is a part is called
 - A. constellation
 - B. the universe
 - C. the milky way
 - D. a group of stars.
- (viii) Two characteristics of the image formed by a plane mirror are
 - A. laterally inverted and virtual
 - B. magnified and laterally inverted
 - C. virtual and smaller than the object
 - D. always larger and at the same distance behind the mirror as the object is in front.
- (ix) A magnetic material can be a magnet when
 - A. all its domains are aligned in different directions
 - B. its domains are aligned such that the N-poles face in one direction and the S-poles in another direction
 - C. its domains are demagnetized
 - D. its domains are aligned such that their poles face in one direction.
- (x) Lenz's law can be applied to predict the
 - A. magnitude of back emf in a circuit
 - B. magnitude of induced current in a circuit
 - C. direction of applied emf across the circuit
 - D direction of the induced emf or back emf in a circuit
- (xi) When a radioactive source was tested by adding sheets of different material between the source and a G.M. counter, the results were as follows.

Sheet added	Effect on G-M counter		
Paper	Large fall in the count rate		
3 mm aluminium	No significant change		
Thick lead	Count rate decreases, but not to zero		

The source therefore was emitting

- A. α -particles and β -particles
- B. α -particles and γ -rays
- C. β -particles and γ -rays
- D. α -particles, β -particles and γ -rays

(xii)	The half-life of an element is 12 hours. What fraction of the element has disintegrated in 72 hours?								
	A.	<u>1</u> 64	В.	<u>1</u> 16	C.	<u>1</u> 32	D.	<u>1</u> 72	
(xiii)	The 1	main functio	on of an elect	ric motor is	to				
	A.	produce	motion from	electric curr	ent				
	B.	make ma	ignetism						
	C.	produce	electricity fro	om motion					
	D.	form an	electromagne	et.					
(xiv)	A ho	rizontal elec	etron beam pa	asses betwee	n two paralle	el horizontal	plates X ar	nd Y, plate	
	X be	ing above Y	. An electric	field is set u	ip such that j	plate Y is at	a positive p	otential.	
	What	t will happer	n to the beam	? It will def	flect				
	A.	upwards							
	B.	_	s to the left						
	C.	downwai	rds						
	D.	sideways	s to the right						
(xv)	The 1	main differe	nce between	p n p and n j	o n transistor	is that			
	A.	the majo	rity charge ca	arriers in p n	p are electro	ons but in n	p n are hole	S	
	B.	-	rity charge ca	_	_		-		
	C.	-	rity charge c		•	_			
	D.	in n p n l are repel	noles are repo led.	elled from th	e negative te	rminal but i	n p n p the	electrons	
			SECT	TION B (45	Marks)				
		Answer	ALL questic	•		s 9 marks.			
(a)	What	t is meant by	y the momen	t of a force a	t a point? St	ate its SI un	it. (02 i	marks)	
(b)		the conditional the lel forces.	ons for a body	y to be in eq	uilibrium wh	en subjected		er of marks)	
(c)	supp	A uniform wooden bar AB of length 120 cm weighing 1.2 N rests on two sharp edged supports C and D placed 10 cm from its either ends. A 0.20 N load hangs from a loop of a string 3 cm from A and a 0.90 N load hangs at 40 cm from B. Find the:							
	(i)	reaction	at C				(02 1	marks)	
	(ii)	reaction	at D				(02	marks)	
(a)	Diffe	erentiate bety	ween heat an	d temperatur	re.		(02 1	marks)	

2.

3.

	(b)	Expla	ain why water is not used as a thermometric liquid.	(03 marks)
	(c)	(i)	The specific heat capacity of a certain substance is 800 J/kg° statement mean?	C; what does this (01 mark)
		(ii)	Calculate the specific heat capacity of mercury, if 980 J of he raise the temperature of 7 g of mercury from 0°C to 1000°C.	•
4.	(a)	Defin	ne an echo.	(01 mark)
	(b)	Name	e any two factors that affect the speed of sound in air.	(02 marks)
	(c)	_	ain briefly why sound produced in a hall with many people is he when the hall has a few people.	ard more clearly (03 marks)
	(d)	•	rson standing 99 m from the foot of a mountain claps his hands a econds later. Calculate, the speed of the sound in the air.	and hears an echo (03 marks)
5.	(a)	Defin	ne the ampere and the potential difference.	(02 marks)
	(b)	Deriv	we the expression for the equivalent resistors R_1 , R_2 connected in	parallel. (03 marks)
	(c)		e cells each of emf 1.5 V and internal resistance 0.6 Ω are joined by and connected across a 5 Ω resistor. Calculate	l in series to form
		(i)	the current and	(02 marks)
		(ii)	the p.d. between the terminals of the cell.	(02 marks)
6.	(a)	Defin	ne the terms: astronomy, galaxy and constellation.	(03 marks)
	(b)	(i)	Explain why the sun looks much bigger and hotter than the re	est of the stars. (01 mark)
		(ii)	Name three heavenly bodies which are closest to the sun.	(03 marks)
	(c)	Diffe	rentiate between a comet and a meteorite.	(02 marks)
			SECTION C (40 Marks)	
			Answer any FOUR (4) questions	
7.	(a)	(i)	Define the term pressure.	(01 mark)
		(ii)	Mention any two phenomena which show that air exerts pres	sure. (02 marks)

	(b)	Explai	ın	
		(i)	how the chain and ball flushing tank works.	(02 marks)
		(ii)	what will happen to the tank when the atmospheric pressure dec	reases. (01 mark)
	(c)		e has a flat rectangular end which measures .4 m by 0.3 m. Calcul d on this end by the atmosphere, if the atmospheric pressure is 1.0	
8.	(a)	What	is meant by the principal focus of a converging lens?	(01 mark)
	(b)		happens to the image of an object placed between the principal for rging lens? Illustrate your answer by using a ray diagram.	cus and a (03 marks)
	(c)	An ob Deterr	ject 4 cm high is placed 20 cm from a converging lens of focal len	gth 8 cm.
		(i)	the distance of the image from the lens.	(02 marks)
		(ii)	the magnification.	(02 marks)
		(iii)	the height of the image formed.	(02 marks)
9.	(a)	What	is meant by	
		(i)	the angle of declination?	(01 mark)
		(ii)	the angle of dip?	(01 mark)
		(iii)	a magnetic pole?	(01 mark)
	(b)		can you test the polarity of a magnet? Explain briefly why is attract polarity.	etion not a sur (03 marks)
	(c)	(i)	What is the difference between a magnetic field and an electric	field? (02 marks)
		(ii)	How are neutral points obtained in an electric field and in a magnetic field?	(01 mark) (01 mark)
10.	(a)	State I	Faraday's law of electromagnetic induction.	(02 marks)
	(b)	(i)	What are the eddy currents?	(01 mark)
		(ii)	Mention one advantage and one disadvantage of eddy currents	(02 marks)

- (c) Calculate the current that will flow through a 3 Ω resistor connected to a secondary coil of a transformer of 60 turns if the primary coil of 1200 turns is connected to a 240 a.c. supply. Assume no losses. (05 marks)
- 11. (a) What are
 - (i) alpha, α -particles (01 mark)
 - (ii) beta, β -particles (01 mark)
 - (iii) gamma, γ -rays? (01 mark)
 - (b) A radon nucleus 222 Rn emits an α -particle followed by a β -particle. What are the atomic number and mass number of the nuclei formed after emission? (03 marks)
 - (c) A radioactive element has a half-life of 3 minutes. If the initial count rate is 512 per minute, how long does it take to reach a count rate of 64 per minute? What fraction of the original element is left? (04 marks)
- 12. (a) (i) How are intrinsic and extrinsic semi conductors different? (02 marks)
 - (ii) Explain briefly how an extrinsic semiconductor is made. (02 marks)
 - (b) When a transistor is connected into a circuit to determine the characteristic curve, the following results are obtained.

$I_b(\mu A)$	20	40	60	80	100
I_{c} (mA)	1.1	2.3	3.2	4.4	5.5

- (i) Plot the graph of I_c against I_b.
- (ii) Draw the best straight line through the points.
- (iii) Calculate the slope.
- (iv) What property of a transistor does its slope represent? (06 marks)