THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2B

PHYSICS 2B ACTUAL PRACTICAL B

(For Both School and Private Candidates)

Time: 2:30 Hours

Tuesday, 23rd October 2012 a.m.

Instructions

- 1. This paper consists of **two (2)** questions. Answer **all** questions.
- 2. Where calculations are involved show your work clearly.
- 3. Marks for questions are indicated at the end of each question.
- 4. Calculators and cellular phones are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- 6. Use $\pi = 3.14$.

- 1. You are provided with a Pendulum bob, Stop watch/clock, Thread, Tape measure, Reton stand and clamp. Proceed as follows:
 - (a) Set the apparatus as shown in Figure 1.

Note: Y is a distance from a knot to the bob which is equal to 10cm.

- (b) Measure X = 60cm, then set the bob into oscillations by displacing it to a small angle and releasing it. Record the time (t) taken for 20 complete oscillations.
- (c) Repeat (b) above for the length of X = 50cm, 40cm, 30cm, and 20cm.
- (d) Record your results in a suitable table including periodic time T and T^2 .
- (e) Plot a graph of T² against X.
- (f) Calculate the slope (S) of your graph.
- (g) Read and record the T²-intercept
- (h) (i) Compute the value of $\frac{4\pi^2}{S}$
 - (ii) Comment on the value obtained in (h) (i).
- (i) Calculate the value of Z where $S = \frac{T^2}{Z}$.
 - (ii) How is Y related to Z?
- (j) State any two (2) sources of error.
- (k) Suggest the aim of this experiment.
- 2. You are provided with a rectangular glass block, optical pins, office pins, drawing board, a white sheet of paper and a protractor. Proceed as follows:
 - (a) Place a glass block on a white sheet of paper with its largest face upper most and trace its figure ABCD. Remove the block; mark the centre of the face AB as O.
 - (b) Draw a line at O making an angle of 30° to the normal 'N' which is representing the incident ray.
 - (c) Erect two pins P₁ and P₂ on the 30° line. Return the glass block on the rectangle ABCD.

- (d) View P₁ and P₂ through face CD of the block and erect sighting pins Q₁ and Q₂ in line with the images P₁ and P₂ respectively. Remove the block and draw a line to the rectangle joining points Q₁ and Q₂ to represent an emergent ray. Finally draw a line joining point O and the point of contact E of line Q₁Q₂ with CD to represent refracted ray.
- (e) Measure the angle of refraction, r, between the normal at O and OE.
- (f) Draw the diagram for this experiment.
- (g) Repeat the procedures in 2 (c), (d) and (e) for the angle of incidence of 40° 50°, 60° and 70°
- (h) Tabulate your results as follows:

Angle of incidence, io	Angle of refraction, r ^o	Sin iº	Sin r°
30			
40			
50			
60			
70			

- (i) Plot a graph of Sin io against Sin ro.
- (j) What is the nature of the graph?
- (k) Find the slope of the graph.
- (1) What does the slope of the graph represent?
- (m) Read and record Sin io intercept of the graph.
- (n) State the relationship between Sin i° and Sin r°.
- (o) State a possible source of error in this experiment.
- (p) How can you minimize the error in 2 (o)?
- (q) Suggest the aim of this experiment.

Note: Attach with your answer booklet diagrams drawn on a single sheet of paper.