

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

083

RADIO AND TV SERVICING (For both School and Private Candidates)

Time: 3 Hours

Monday, 18th October 2010 a.m.

Instructions

- 1. This paper consists of sections A, B and C.
- Answer all questions in sections A and B and three (3) questions from section
- Calculators are not allowed in the examination room.
- 4. Cellular phones are not allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).

This paper consists of 8 printed pages.

100 print

SECTION A (10 Marks)

Answer all questions in this section.

- For each of the items (i) (x), choose the correct answer from among the given alternatives and write its letter beside the item number.
 - In the n-p-n transistor under forward biased condition p layer is (i) extremely thin because
 - the material used for p-type semiconductor is very costly.
 - the p-type semiconductor requires more energy to disturb the B electrons in the valence band.
 - 90% electrons can be collected at the collector. C
 - 90% electrons can be controlled at the emitter. D
 - movement of electrons towards the junction is seized. E
 - Which of the following displays has minimum power consumption? (ii)
 - Light emitting diode (LED)
 - B Liquid crystal display (LCD)
 - C Nixie tube
 - D Fluorescent lamps
 - E Gas filled tubes.
 - If one wishes to amplify the potential difference between two points in a (iii) circuit when neither of these points is grounded, which of the following amplifier will be used?
 - RC coupled amplifier
 - B Transformer coupled amplifier
 - C Differential amplifier
 - D Audio power amplifier
 - Direct-coupled amplifier.
 - Which of the following statement is true? (iv)
 - L-type filter with series C and shunt L is low pass filter.
 - π -type filter with series C and shunt L is low pass filter
 - T-type filter with series C and shunt L is low pass filter L-type filter with series C and shunt C is low pass filter C
 - D
 - K-type filter with series C and shunt L is low pass filter.
 - Which of the following diodes has almost zero minority carrier storage (v) time?
 - Rectifier A
 - Schottky B
 - PIN C
 - Zener D
 - E Tunnel.

- (vi) Which wave predominates at large distance above the earth?
 - A Ground wave
 - Sky wave
 - C Space wave
 - D Both sky wave and ground wave
 - Ground wave or space wave.
- (vii) Which of the following oscillator is expected to give highest Q-factor?
 - A Crystal controlled oscillator
 - B Tuned oscillator
 - C Wein bridge oscillator
 - Colpitts oscillator
 - E Hartley oscillator.
- (viii) What is the name of the transformer's coil into which voltage is induced?
 - A Step down transformer
 - B Primary winding
 - Secondary winding
 - D Induction coil
 - E Turn's ratio coil.
 - (ix) A silicon controlled rectifier (SCR) is a
 - A unijunction device
 - device with three junctions B
 - a device with four junctions C
 - a combination of diac and triac
 - PNPN device.
 - Which of the following is not a correct relationship between α and β ? (x)
 - $A \qquad \beta = \frac{\alpha}{1-\alpha}$
 - $B \qquad \alpha = \frac{\beta}{1 \beta}$
 - $C \qquad \alpha = \frac{\beta}{1+\beta}$
 - $D \qquad 1-\alpha = \frac{1}{1+\beta}$
 - $E \qquad 1 + \beta = \frac{1}{1 \alpha}$

SECTION B (30 Marks)

Answer all questions in this section.

- Two capacitors C₁ and C₂ are connected in parallel across two points of p.d V volts. Calculate the:
 - (a) Equivalent capacitance, C of the circuit.
 - (b) Energy E, stored in the equivalent capacitance, C.
- 3. (a) What is the difference between BJT and JFET?
 - (b) What happens if you interchange the polarities of electrolytic capacitor in a rectifier circuit?
- 4. (a) What do you understand by the terms 'frequency' and 'amplitude' as applied in a sine wave?
 - (b) Calculate the frequency of an electromagnetic wave when travelling in free space if it has a wavelength of
 - (i) 3 cm
 - (ii) 1000 cm
 - (iii) 200 m
- Find the current in the circuit shown in Figure 1. Assume an ideal diode.

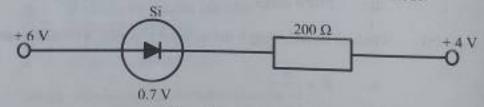
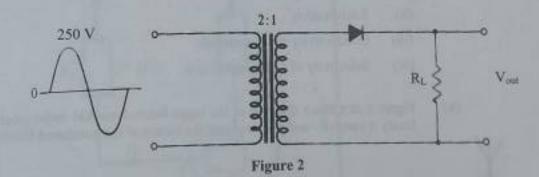
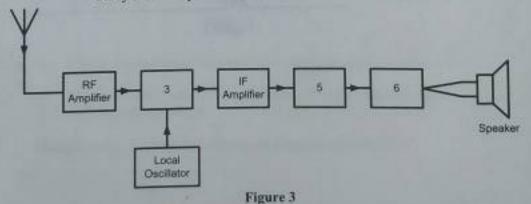



Figure 1

- 6. (a) What is the 'resonant frequency' of a tuned circuit of an oscillator?
 - (b) If a tuned circuit has $L=58.6~\mu H$ and C=300~pF. Calculate the frequency of oscillation.
- Mention three (3) advantages of using an integrated circuit (ICs)?

- 8. For a R-L-C series circuit in which R = 10 Ω , L = 100 μH and C = 100 pF, Calculate the:
 - (a) Resonant frequency (f_r).
 - (b) Impedance (Z) of the circuit at resonance.
 - (c) Q factor of the circuit.
- (a) If the amplitude of the radio frequency is 10 mV and that of the carrier wave is 20 mV, determine the modulation depth.
 - (b) Mention two (2) types of modulation.
- 10. (a) In the atomic structure of a semiconductor, which energy band do free electrons exist?
 - (b) How are holes created in an intrinsic semiconductor?
 - (c) Why is current more easily established in a semiconductor than in an insulator?
- Determine the peak value of the output voltage for the circuit shown in Figure
 2.



SECTION C (60 Marks)

Answer three (3) questions from this section.

- 12. (a) Define the following terminologies.
 - (i) Electron gun
 - (ii) Phosphor
 - (iii) Interlacing
 - (iv) Chrominance
 - (v) Raster
 - (b) (i) Mention two (2) types of deflection system applied in the cathode ray tube (CRT).
 - (ii) List down three (3) primary colours as applied in the colour television.
 - (iii) Explain the term 'amplifier gain' as applied in the electronic circuit.
- 13. (a) Explain the following terms as applied in electronics.
 - (i) Transducer
 - (ii) Rectification
 - (iii) Conductivity of the material
 - (iv) Selectivity of a resonant circuit
 - (b) Figure 3 is a block diagram of the super heterodyne AM radio receiver. Study it carefully and then indicate the names of the numbered blocks.

NIC PURI

- 14. An amplifier circuit consists of an NPN transistor, power supply +Vcc is biasing resistor R_1 and R_2 (potential divider method), collector resistor R_c , emitter resistor R_c and capacitor C_1 .
 - (a) Draw the circuit diagram of the amplifier.
 - (b) Write the equation of the load line.
- (a) Explain the meaning of the following terms in connection with amplifiers.
 - (i) Saturation point
 - (ii) Cut-off point.
 - (b) Study Figure 4 careful then calculate the following values at cut-off point.
 - (i) Collector-emitter voltage, VCE
 - (ii) Collector current, Ic.

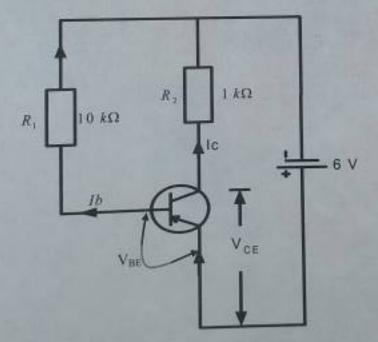



Figure 4

- (b) Give the speed of television waves in free space.
- (c) A wavelength of television antenna must be equal to half the wavelength of the signal received. Calculate the length of antenna when the television receiver is tuned to a television station transmitting at 300 MHz.

Ap to