THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/1

ADVANCED MATHEMATICS 1

(For Both School and Private Candidates)

Time: 3 Hours

Monday, 05th May 2014 a.m.

Instructions

- 1. This paper consists of ten (10) questions, each carrying ten (10) marks.
- 2. Answer all questions.
- 3. All work done in answering each question must be shown clearly.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

Page 1 of 6

- Using a non-programmable calculator:
 - (a) (i) Evaluate $\frac{6.2 \ln \sqrt{7} \div \ln \sqrt{3}}{1782 \log 1783}$ and write your answer to six significant figures.
 - (ii) Compute $\frac{3^{1.75} \times \log_2 14}{\tan^{-1}(3.42) \times \log_e 13.27}$ to seven significant figures.
 - (b) The volume of a tetrahedron is given by $v = \frac{1}{6}a^3(1-\cos\theta)(1+2\cos\theta)^{\frac{1}{2}}$ where a is the length of the edges and θ an angle made by the edges. By completing the table below, find the volume of the tetrahedron for the given values of α and θ and write your answers correct to three decimal places.

a	θ	$\cos \theta$	$2\sqrt{\frac{1+\cos 2\theta}{2}}$	Volume (v) in cubic unit
1 unit	$\frac{\pi}{12}$	Des aller	7 1 1 1 1 1 1	
2 unit	$\frac{\pi}{9}$			
3 unit	$\frac{\pi}{6}$			

- 2. (a) Sketch the graphs of the functions $y = \cosh x$ and $y = \sinh x$ on the same x y plane.
 - (ii) Using part (a) (i), state the range of $\cosh x$ and $\sinh x$.
 - (b) (i) Prove that $sinh^{-1} x = ln(x + \sqrt{x^2 + 1})$.
 - (ii) Solve the equation $3 \operatorname{sech}^2 x + 4 \tanh x + 1 = 0$ and write your answer correct to 4 decimal places.
 - (iii) Verify that $\sinh 3x = 3\sinh x + 4\sinh^3 x$.
 - (c) Show that $\frac{1}{e^{-3\ln x}} \left(\sqrt{\frac{\cosh \ln x \sinh \ln x}{\cosh \ln x + \sinh \ln x}} \right) = x^2.$

 (a) A farm is to be planted with cabbages and potatoes. The cost and the number of people needed for the work is indicated in the table below:

	Cabbages	Potatoes	Total available
Labour per hectare (Number of people)	2	1	10
Labour costs per hectare (Tshs)	28,000/=	24,000/=	168,000/=
Costs of fertilizer per hectare (Tshs)	60,000/=	80,000/=	480,000/=

- (i) Find the greatest number of hectares that can be planted.
- (ii) If the profit for a hectare of cabbages is 80,000/= and for potatoes is 60,000/=, how many hectares of each crop should be planted to maximize the profit?
- (b) One of the Tanzanian wine drink manufacturing firms has m plants located in different towns. The total production is absorbed by n retail shops in different towns.
 - (i) Formulate the general transporting schedule that minimizes the total cost of transporting wine drinks from various plants to various retail shops.
 - (ii) Construct the transportation table with 2 origins and 2 destinations using the following parameters: The Supply is a_i , demand b_j and the cost c_{ij} .
 - (iii) From (b) (i) and (ii), deduce the conditions which satisfy the existence of a feasible solution to the transportation problem.
- 4. (a) The monthly wages of employees working in a certain factory are given in the table

below:						110 120	
Wages in shs (× 1000)	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100	100 - 110	110 - 120
Number of	8	10	16	15	10	8	3

- (i) By using an appropriate formula, find the median and mode for the wages given above, giving your answer to the nearest thousand shillings.
- (ii) Find the semi-interquartile range of the given data.
- (b) The number of errors made by the typist on each page of a document with 100 pages were recorded in the table below.

Number of errors	Frequency
0	15
1	30
2	28
3	18
4	9

 Find the variance and standard deviation of the number of errors per page, writing your answer correct to 4 decimal places.

(ii) Find the 20th percentile of the data.

- 5. (a) Using Venn diagrams show that: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
 - (b) By using set properties, prove that for any non-empty sets X and Y:

(i) $X \cup (X \cap Y) = X$,

- (ii) $(X \cap Y') \cup (Y \cap X') = (X \cup Y) (X \cap Y)$
- (c) There are twenty five men at a meeting of which eleven are doctors, sixteen are teachers, and eight are both doctors and teachers. How many are neither doctors nor teachers?
- 6. (a) (i) A function is defined by $g: x \to x^2 10$ for all $x \in \Re$. Find all the values of x for which $g \circ g(x) = 26$.
 - (ii) If f(x) = 3x 2, g(x) = x + 7 and $h(x) = \frac{1}{1+x}$, determine the intercepts and the asymptotes of $f \circ g \circ h$.
 - (b) Given that $f(x) = x^4 2x^3 x^2 + 2x$,
 - (i) Find the value of x where the curve f(x) cuts the x axis.
 - (ii) Sketch the graph of f(x).
- 7. (a) (i) Apply the Newton Raphson formula with three iterations to compute the value of $\sqrt[3]{7}$ correct to five significant figures. Use $x_0 = 2$.
 - (ii) The figure below has points P, Q and R on the quadratic curve $f(x) = ax^2 + bx + c$. Derive the Simpson's rule with *n*-ordinates to approximate the area PQRST.

- (b) Evaluate $\int_0^{\frac{\pi}{4}} \cos^2 x dx$ by using the Simpson's rule with five ordinates and write your answer to 4 decimal places.
 - (ii) Find the actual value of $\int_0^{\frac{\pi}{4}} \cos^2 x dx$ and compare your answers with part (b) (i).
- 8. (a) Sketch the diagram for the locus of points which move such that it covers a distance a units from the curve $x^2 + y^2 + 2x 4y = 20$ where |a| < 5.
 - (b) Find the length of the tangent from the point (5, 7) to the circle $x^2 + y^2 4x + 6y + 9 = 0$.
 - (c) If p and q are the lengths of the perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos 2\theta$ and $x\sec\theta + y\csc\theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$.
- 9. (a) If the gradient of a certain function is $\frac{1}{7(e^x + 1)}$, find the function.
 - (b) Evaluate the following integrals:
 - (i) $\int_1^5 \frac{2t}{\sqrt{2t+1}}$ (leave your answer in surd form).
 - (ii) $\int_0^{\frac{\pi}{2}} \cos 2x \sin x dx$

Page 5 of 6

- (c) Find the length of the arc of the curve $6xy = 3 + x^4$ between the points whose abscissa are 1 and 3.
- 10. (a) Differentiate $3x^2 + \cos 2x$ from first principles.
 - (b) If $y = \sin^{n+1} x \cos^{m-1} x$, find $\frac{dy}{dx}$.
 - (c) (i) Show that $\ln\left(\frac{x-1}{x+1}\right) = -2\left(\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots\right)$ for |x| > 1.
 - (ii) Use the series in part (c) (i) to find the value of ln 0.5 correct to three decimal places,