THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/2

ADVANCED MATHEMATICS 2

(For Both School and Private Candidates)

Time: 3 Hours

Year: 2021

Instructions

- 1. This paper consists sections A and B with a total of eight (8) questions.
- 2. Answer all questions in section A and two (2) questions from section B.
- 3. Section A carries sixty (60) marks and section B carries forty (40) marks.
- 4. All work done in answering each question must be shown clearly.
- 5. NECTA'S mathematical tables and non-programmable calculators may be used.
- 6. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 7. Write your **Examination Number** on every page of your answer booklet(s).

Page 1 of 4

SECTION A (60 Marks)

Answer all questions in this section.

- 1. (a) If A and B are such that $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(A \cup B) = \frac{1}{2}$, calculate;
 - (i) $P(A \cap B')$.
 - (ii) P(A/B').
 - (b) Two dices are thrown simultaneously.
 - (i) List the sample space for this event.
 - (ii) Find the probability that the sum of the numbers obtained on the dice is neither a multiple of 2 nor a multiple of 3.
 - (c) If X is binomially distributed, the probability that the event will happen exactly x times in n trials is given by the function $P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$. Establish the validity of the Poisson approximation to the binomial distribution.
 - 2. (a) The contrapositive of the statement Y is given by $\sim (Q \wedge P) \rightarrow \sim P$. By using the laws of algebra of propositions, show that its inverse is a tautology.
 - (b) Test the validity of the argument whose conclusion is $\sim Q$ and premises are $P \rightarrow (\sim P \rightarrow Q)$, $Q \rightarrow \sim P$ and P.
 - (c) (i) Construct a truth table for the compound statement that corresponds to the following circuit:

- (ii) Draw a simple network diagram for the statement $(P \rightarrow Q) \land (P \lor Q)$.
- 3. (a) If $\underline{a} = \underline{i} \underline{j} + 2\underline{k}$ and $\underline{b} = \underline{i} + \underline{j}$, find the unit vector orthogonal to both \underline{a} and \underline{b} .
 - (b) The position vectors of the points A and B are $2\underline{i} + 3\underline{j} \underline{k}$ and $-\underline{i} + 5\underline{j} + 7\underline{k}$ respectively. If C divides \overline{AB} internally in the ratio 2:1, find the position vector of point C.
 - (c) Using the cosine rule, show that in the triangle ABC, $\underline{c} = \underline{b} \cos A + \underline{a} \cos B$.

- 4. (a) If 2x + 10yi 4y = -12 + 5i, find the values of x and y.
 - (b) Express $(\cos \theta + i \sin \theta)^{-n}$ in the form a + ib.
 - (c) Given that z = x + iy, express the complex number $\frac{z+i}{iz+2}$ in polynomial form and hence find the resulting complex number when z = 1 + 2i.

SECTION B (40 Marks)

Answer two (2) questions from this section.

- 5. (a) If A, B and C are angles of a right angled triangle such that $\cos A = \frac{3}{5}$ and $\cos B = \frac{5}{13}$, find the value of $\tan 2A$, $\cos (A+B)$ and $\csc (A-B)$ in the form $\frac{x}{y}$.
 - (b) Show that $\cot\left(x + \frac{\pi}{2}\right) \tan\left(x \frac{\pi}{2}\right) = \frac{2\cos 2x}{\sin 2x}$.
 - (ii) Solve the equation $4\cos 2\theta 2\cos \theta + 3 = 0$, for $0^{\circ} \le \theta \le 360^{\circ}$.
 - (c) Express $\cos^4 \theta$ in terms of cosines multiples of θ .
- 6. (a) By using the first five terms in the expansion of $(1+x)^n$, find the value of $(1.98)^{10}$ correct to three decimal places.
 - (b) The polynomial $x^5 + 4x^2 + ax + b$ leaves the remainder of 2x + 3 when it is divided by $x^2 1$. Use the remainder theorem to find the values of a and b.
 - (c) The roots of the quadratic equation $x^2 + 2mx + n = 0$ differ by 2. Show that $m^2 = 1 + n$.
 - (d) If $A = \begin{pmatrix} 4 & -1 & 1 \\ 0 & 0 & 2 \\ m & -1 & 1 \end{pmatrix}$ is singular, find the value of m.
 - (e) Use Cramer's rule to solve the following system of equations: $\begin{cases} 5x + 6y + 4z = 5 \\ 7x 4y 3z = 8 \\ 2x + 3y + 2z = 2 \end{cases}$
- 7. (a) Form a differential equation whose solution is x = tan(Ay).
 - (b) Solve the differential equation $\frac{d^2\theta}{dt^2} 4\frac{d\theta}{dt} + 4\theta = \frac{3}{7}.$
 - (c) A biologist is researching the population of a specie. She tries a number of different models for the rate of growth of the population and solves them to compare with

observed data. Her first model is $\frac{dn}{dt} = kn\left(1 - \frac{n}{a}\right)$ where n is the population at time t years, k is a constant and a is the maximum population sustainable by the environment. Given that k = 0.2, a = 100000 and the initial population is 30000;

- (i) find the general solution of the differential equation.
- (ii) estimate the population after 5 years to 2 significant figurers.
- 8. (a) Express $x^2 + y^2 = 2x + 2y$ in polar form.
 - (b) Find the equation of the chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ joining the points whose eccentric angles are θ and ϕ .
 - (c) Show that $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, hence find the equation of the tangent line at point P on the given hyperbola.
 - (d) Show whether the equation of a normal to the parabola $y^2 = 4ax$ at point (x_1, y_1) is $(x-x_1)y_1 + 2a(y-y_1) = 0$.
 - (e) Change the polar equation $r^2(b^2\cos^2\theta + a^2\sin^2\theta) = a^2b^2$ into the Cartesian equation.
 - (ii) Draw the graph of $r = 2(1 + \cos \theta)$.