THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/2 ADVANCED MATHEMATICS 2

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2022

Instructions

- 1. This paper consists of section A and B.
- 2. Answer all questions in section A and two questions from section B.
- 3. All work done and answers of each question must be shown clearly.
- 4. NECTA'S Mathematical tables and Non-programmable calculations may be used
- 5. All writing must be in **black** or **blue** ink, **except** drawing which must be in pencil.

Find this and other free resources at: http://maktaba.tetea.org

Prepared by: Maria Marco for TETEA

1. (a) The time taken by John to deliver milk to the High Street is normally distributed with mean 12 minutes and standard deviation 2 minutes. If he delivers milk every day, estimate the number of days during the year when he takes longer than 17 minutes (1 year = 365 days).

Mean
$$\mu = 12$$
, SD $\sigma = 2$.

$$P(X > 17) = P(Z > (17 - 12) / 2) = P(Z > 2.5)$$

$$P(Z > 2.5) \approx 1 - 0.9938 = 0.0062$$

Number of days =
$$365 \times 0.0062 \approx 2.263$$

Answer: Approximately 2 days.

1. (b) Suppose that a group of people in a village attending hospital has been categorized according to the incidence of two diseases:

Sex	Malaria	Typhoid
Male	16	12
Female	12	10

Find the probability that the person chosen is a female given the person is suffering from malaria.

Total malaria = 16 + 12 = 28

Female with malaria = 12

 $P(Female \mid Malaria) = 12 / 28 = 3 / 7$

Answer: The probability is 3/7.

1. (c) In how many ways can a hand of 4 cards be chosen from an ordinary pack of 52 playing cards?

Number of ways = C(52, 4)

$$= (52 \times 51 \times 50 \times 49) / (4 \times 3 \times 2 \times 1)$$

$$= 6497400 / 24 = 270725$$

Answer: 270725 ways.

2. (a) Write the converse and inverse of the statement "If you score an A grade in a logic test, then I will buy you a new car" in words and symbolic form.

Statement: $p \rightarrow q$ (p: score an A, q: buy a new car)

Converse: $q \rightarrow p$

"If I buy you a new car, then you scored an A grade in a logic test."

Inverse: $\neg p \rightarrow \neg q$

"If you do not score an A grade in a logic test, then I will not buy you a new car."

Answer: Converse: "If I buy you a new car, then you scored an A grade in a logic test" $(q \rightarrow p)$.

Inverse: "If you do not score an A grade in a logic test, then I will not buy you a new car" ($\neg p \rightarrow \neg q$).

2. (b) Using a truth table, examine whether $[\neg(p \to (p \land q))] \lor (p \to q)$ is equivalent to $(q \to p) \land (p \to q)$.

Truth table:

$$\begin{array}{l} p\mid q\mid p\wedge q\mid p\rightarrow (p\wedge q)\mid \neg(p\rightarrow (p\wedge q))\mid p\rightarrow q\mid [\neg(p\rightarrow (p\wedge q))] \veebar (p\rightarrow q)\mid q\rightarrow p\mid (q\rightarrow p)\wedge (p\rightarrow q) \end{array}$$

Columns $[\neg(p \to (p \land q))] \veebar (p \to q)$ and $(q \to p) \land (p \to q)$ differ, not equivalent.

Answer: Not equivalent.

2. (c) Use laws of algebra of propositions to simplify $[p \land (p \lor q)] \lor [q \land (\neg (p \land q))]$.

$$[p \land (p \lor q)] \lor [q \land (\neg(p \land q))]$$

=
$$p \land (p \lor q) \lor (q \land (\neg p \lor \neg q))$$
 (De Morgan's)

= p V (q
$$\land \neg p \land \neg q$$
) (Distributive, Absorption)

= p V (q
$$\land \neg q \land \neg p$$
) (Commutative)

=
$$p \lor (0 \land \neg p)$$
 (Complement)

$$= p \lor 0 = p$$

Answer: p.

3. (a) Find the work done by force F = i + 2j + k moving an object at a distance of 7 m in the direction of the vector r = 3i + 2j + 4k.

Unit vector in direction of r:
$$|\mathbf{r}| = \sqrt{(3^2 + 2^2 + 4^2)} = \sqrt{(9 + 4 + 16)} = \sqrt{29}$$

3

Find this and other free resources at: http://maktaba.tetea.org

Unit vector = $(3/\sqrt{29}, 2/\sqrt{29}, 4/\sqrt{29})$

Force component:
$$F \cdot (r/|r|) = (1 \times 3/\sqrt{29}) + (2 \times 2/\sqrt{29}) + (1 \times 4/\sqrt{29}) = (3 + 4 + 4) / \sqrt{29} = 11 / \sqrt{29}$$

Work =
$$(11 / \sqrt{29}) \times 7 = 77 / \sqrt{29}$$

Answer: Work done = $77 / \sqrt{29}$ units.

3. (b) If P and Q are the points P(3, -4, 6) and Q(1, -3, 8) respectively, find a unit vector parallel to the displacement vector PQ.

$$PO = O - P = (1 - 3, -3 - (-4), 8 - 6) = (-2, 1, 2)$$

$$|P Q| = \sqrt{(-2)^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$$

Unit vector = (-2/3, 1/3, 2/3)

Answer: Unit vector = (-2/3, 1/3, 2/3).

3. (c) The position vectors of points A and B are a and b respectively. If point C divides AB internally in the ratio of 2:1, D divides AB externally in the ratio of 1:4 and E divides CD internally in the ratio of 2:1, find the position vectors of C, D, and E in terms of a and b.

C divides AB in 2:1:
$$C = (1a + 2b) / (2 + 1) = (a + 2b) / 3$$

D divides AB externally in 1:4: D =
$$(1b - 4a) / (1 - 4) = (-4a + b) / (-3) = (4a - b) / 3$$

E divides CD in 2:1:
$$E = (1C + 2D) / (1 + 2) = ((a + 2b)/3 + 2 (4a - b)/3) / 3 = (a + 2b + 8a - 2b) / 9 = (9a / 9) = a$$

Answer:
$$C = (a + 2b) / 3$$
, $D = (4a - b) / 3$, $E = a$.

4. (a) Express $\sqrt{(1+i)}$ in polar form.

$$1 + i$$
: $r = \sqrt{(1^2 + 1^2)} = \sqrt{2}$, $\theta = \tan^{-1}(1/1) = \pi/4$

$$1 + i = \sqrt{2} (\cos(\pi/4) + i \sin(\pi/4))$$

$$\sqrt{(1+i)} = (\sqrt{2})^{(1/2)} (\cos(\pi/4 + 2k\pi)/2 + i \sin(\pi/4 + 2k\pi)/2)$$

$$= 2^{(1/4)} (\cos(\pi/8) + i \sin(\pi/8)) (k = 0)$$

$$= 2^{(1/4)} (\cos(5\pi/8) + i \sin(5\pi/8)) (k = 1)$$

Answer: $2^{(1/4)} (\cos(\pi/8) + i \sin(\pi/8)), 2^{(1/4)} (\cos(5\pi/8) + i \sin(5\pi/8)).$

4. (b) Using the results in part (a), show that $\tan (\pi/8) = \sqrt{2} - 1$.

$$\sqrt{(1+i)} = 2^{(1/4)} (\cos(\pi/8) + i \sin(\pi/8))$$

Also, $\sqrt{(1+i)} = (1+i)^{(1/2)}$, let $(1+i)^{(1/2)} = a + bi$

 $(1+i) = (a+bi)^2 = a^2 - b^2 + 2abi$

Real: $a^2 - b^2 = 1$

Imaginary: 2ab = 1

Solve: ab = 1/2, b = 1/(2a), substitute: $a^2 - (1/(2a))^2 = 1$

 $a^2 - 1/(4a^2) = 1$

 $4a^4 - 1 = 4a^2$

 $4a^4 - 4a^2 - 1 = 0$

 $a^2 = (4 \pm \sqrt{16 + 16}) / 8 = (4 \pm 4\sqrt{2}) / 8 = (1 \pm \sqrt{2}) / 2$

 $a^2 = (1 + \sqrt{2}) / 2$, $a = \sqrt{(1 + \sqrt{2})/2}$

 $b = 1/(2a) = \sqrt{(\sqrt{2} - 1)/2}$

 $\tan(\pi/8) = b / a = \sqrt{(\sqrt{2} - 1)/(1 + \sqrt{2})} = \sqrt{2} - 1$ (after rationalizing)

Answer: $tan(\pi/8) = \sqrt{2} - 1$.

4. (c) If $z_1 = r_1$ (cos $\theta_1 + i \sin \theta_1$) and $z_2 = r_2$ (cos $\theta_2 + i \sin \theta_2$), prove that $Arg(z_1 / z_2) = Arg(z_1) - Arg(z_2)$.

 $z 1/z 2 = (r 1/r 2) (\cos(\theta 1 - \theta 2) + i \sin(\theta 1 - \theta 2))$

 $Arg(z \ 1 / z \ 2) = \theta \ 1 - \theta \ 2 = Arg(z \ 1) - Arg(z_2)$

Answer: Proven.

4. (d) The complex numbers $z_1 = c / (1 + i)$ and $z_2 = d / (1 + 2i)$ where $c, d \in \mathbb{R}$ are such that $z_1 + z_2 = 1$, find the values of c and d.

 $z_1 = c(1-i)/(1+i)(1-i) = c(1-i)/2$

 $z_2 = d(1 - 2i) / (1 + 2i)(1 - 2i) = d(1 - 2i) / 5$

 $z_1 + z_2 = (c/2 - ci/2) + (d/5 - 2di/5) = 1$

Real: c/2 + d/5 = 1

Imaginary: -c/2 - 2d/5 = 0

From imaginary: -c/2 = 2d/5, c = -4d/5

Substitute: (-4d/5)/2 + d/5 = 1

-2d/5 + d/5 = 1

-d/5 = 1

d = -5

c = -4(-5)/5 = 4

Verify: $z_1 = 4(1 - i)/2 = 2 - 2i$, $z_2 = -5(1 - 2i)/5 = -1 + 2i$, $z_1 + z_2 = 1$

Answer: c = 4, d = -5.

5. (a) For all values of α , show that $\sin 3\alpha - \cos 3\alpha = 2$.

This appears incorrect as $\sin 3\alpha - \cos 3\alpha \neq 2$ for all α (e.g., $\alpha = 0$: $\sin 0 - \cos 0 = 0 - 1 = -1$). Likely a typo; let's assume the intended problem is to evaluate or prove a trigonometric identity. Let's try a similar identity or rephrase. Assume $\sin 3\alpha - \cos 3\alpha = 2 \sin \alpha \cos \alpha$ (as a possible correction).

 $\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha$

 $\cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha$

 $\sin 3\alpha - \cos 3\alpha = (3 \sin \alpha - 4 \sin^3 \alpha) - (4 \cos^3 \alpha - 3 \cos \alpha)$

This does not simplify to 2, so the problem statement is likely incorrect. Without a correct identity, we cannot proceed. Let's move to the next problem.

Answer: Problem statement appears incorrect; cannot be shown as given.

5. (b) Prove that $(\sin x + \sin 2x + \sin 3x) / (\cos x + \cos 2x + \cos 3x) = \tan 2x$.

Numerator: $\sin x + \sin 3x + \sin 2x$

 $\sin x + \sin 3x = 2 \sin((x + 3x)/2) \cos((x - 3x)/2) = 2 \sin 2x \cos(-x) = 2 \sin 2x \cos x$

Add $\sin 2x$: $2 \sin 2x \cos x + \sin 2x = \sin 2x (2 \cos x + 1)$

Denominator: $\cos x + \cos 3x + \cos 2x$

 $\cos x + \cos 3x = 2\cos((x + 3x)/2)\cos((x - 3x)/2) = 2\cos 2x\cos x$

Add $\cos 2x$: $2 \cos 2x \cos x + \cos 2x = \cos 2x (2 \cos x + 1)$

Expression: $[\sin 2x (2 \cos x + 1)] / [\cos 2x (2 \cos x + 1)] = \sin 2x / \cos 2x = \tan 2x$

Answer: Proven.

5. (c) Solve for β in the trigonometric equation $\tan^{-1}((\beta-2)/(\beta-2)) + \tan^{-1}((\beta+1)/(\beta+2)) = \pi/4$.

6

Find this and other free resources at: http://maktaba.tetea.org

Since $(\beta - 2)/(\beta - 2) = 1$ for $\beta \neq 2$, first term is $\tan^{-1}(1) = \pi/4$.

Equation: $\pi/4 + \tan^{-1}((\beta + 1)/(\beta + 2)) = \pi/4$

 $\tan^{-1}((\beta + 1)/(\beta + 2)) = 0$

 $(\beta + 1)/(\beta + 2) = 0$

 $\beta + 1 = 0$

 $\beta = -1$

Check: $\tan^{-1}((-1-2)/(-1-2)) + \tan^{-1}((-1+1)/(-1+2)) = \pi/4 + \tan^{-1}(0) = \pi/4$, correct.

Answer: $\beta = -1$.

5. (d) Rewrite $4 \cos \theta - 3 \sin \theta$ in the form R $\cos(\theta - \alpha)$, hence solve the equation $4 \cos \theta - 3 \sin \theta = 5/2$ in the interval $\pi/2 \le \theta \le 2\pi$.

 $R = \sqrt{(4^2 + (-3)^2)} = \sqrt{(16 + 9)} = \sqrt{25} = 5$

 $\cos \alpha = 4/5$, $\sin \alpha = -3/5$

 $4\cos\theta - 3\sin\theta = 5(\cos\theta\cos\alpha + \sin\theta\sin\alpha) = 5\cos(\theta - \alpha)$

 $5\cos(\theta - \alpha) = 5/2$

 $cos(\theta - \alpha) = 1/2$

 θ - $\alpha = \pm \pi/3 + 2k\pi$

 $\alpha = \arccos(4/5), \theta = \pm \pi/3 + \alpha + 2k\pi$

For $\pi/2 \le \theta \le 2\pi$, k = 0:

 $\theta = \pi/3 + \alpha \ (\approx 1.97, \text{ within range})$

 $\theta = -\pi/3 + \alpha + 2\pi$ (≈ 5.71 , within range)

Answer: $\theta = \pi/3 + \alpha$, $2\pi - \pi/3 + \alpha$, where $\cos \alpha = 4/5$.

6. (a) If the coefficients of x and x^2 in the expansion of $(1 + px + qx^2) / (1 - x)^2$ are zero, find the numerical values of p and q.

Expand $(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + ...$ (binomial expansion for n = -2)

 $(1 + px + qx^2) / (1 - x)^2 = (1 + px + qx^2) (1 + 2x + 3x^2 + 4x^3 + ...)$

7

Find this and other free resources at: http://maktaba.tetea.org

$$= 1 + (p+2)x + (q+2p+3)x^2 + (4p+3q+4)x^3 + ...$$

Coefficient of x: p + 2 = 0, p = -2

Coefficient of x^2 : q + 2p + 3 = 0, q + 2(-2) + 3 = 0, q - 4 + 3 = 0, q = 1

Answer: p = -2, q = 1.

6. (b) Use the principle of mathematical induction to prove that for every positive integer, $3^{(2n-2)} + 2^{(6n)}$ is divisible by 5.

Base case (n = 1):

$$3^{(2(1)-2)} + 2^{(6(1))} = 3^{0} + 2^{6} = 1 + 64 = 65, 65 / 5 = 13$$
, divisible by 5.

Assume true for n = k: $3^{(2k-2)} + 2^{(6k)} = 5m$

For n = k + 1:

$$3^{(2(k+1)-2)} + 2^{(6(k+1))} = 3^{(2k)} + 2^{(6k+6)}$$

$$= 9 \times 3^{(2k-2)} + 64 \times 2^{(6k)}$$

= $9(5m - 2^{6k}) + 64 \times 2^{6k}$ (using inductive hypothesis)

$$= 45m - 9 \times 2^{(6k)} + 64 \times 2^{(6k)}$$

$$= 45m + 55 \times 2^{(6k)}$$

45m is divisible by 5, 55 x $2^{(6k)}$ is divisible by 5 (since 55 / 5 = 11), so the sum is divisible by 5.

Answer: Proven, $3^{(2n-2)} + 2^{(6n)}$ is divisible by 5 for all positive integers n.

6. (c) Given that $P(x) = 2x^3 + 7x^2 - 5$, use the synthetic method to find the quotient and remainder when P(x) is divided by x + 3.

Synthetic division: $x + 3 \rightarrow x = -3$

Quotient: $2x^2 + x - 8$

Remainder: 24

Answer: Quotient = $2x^2 + x - 8$, Remainder = 24.

6. (d) Find the determinant and inverse of the matrix $A = [[2\ 1\ 0], [1\ 5\ 2], [1\ -1\ 1]]$, hence solve the simultaneous equations:

$$2x + y = 4$$

$$x + 5y + 2z = 7$$

$$x - y + z = 1$$

$$det(A) = 2 (5 \times 1 - 2 \times (-1)) - 1 (1 \times 1 - 2 \times 1) + 0 = 2 (5 + 2) - 1 (1 - 2) = 14 + 1 = 15$$

Cofactors:

$$C_{11} = 5 \times 1 - 2 \times (-1) = 7$$
, $C_{12} = -(1 \times 1 - 2 \times 1) = 1$, $C_{13} = (1 \times (-1) - 5 \times 1) = -6$

$$C_21 = -(1 \times 1 - 0 \times (-1)) = -1$$
, $C_22 = (2 \times 1 - 0 \times 1) = 2$, $C_23 = -((2 \times (-1) - 1 \times 0)) = 2$

$$C_31 = (1 \times 2 - 5 \times 0) = 2$$
, $C_32 = -((2 \times 2 - 0 \times 1)) = -4$, $C_33 = (2 \times 5 - 1 \times 1) = 9$

Adjoint: [[7 -1 2], [1 2 -4], [-6 2 9]]

$$A^{-1} = (1/15) [[7 \ 1 \ -6], [-1 \ 2 \ 2], [2 \ -4 \ 9]]$$

Solve:
$$X = A^{-1} B$$
, $B = [4, 7, 1]$

$$x = (1/15) (7 \times 4 + 1 \times 7 + (-6) \times 1) = (1/15) (28 + 7 - 6) = 39/15 = 13/5$$

$$y = (1/15) (-1 \times 4 + 2 \times 7 + 2 \times 1) = (1/15) (-4 + 14 + 2) = 12/15 = 4/5$$

$$z = (1/15) (2 \times 4 + (-4) \times 7 + 9 \times 1) = (1/15) (8 - 28 + 9) = -11/15$$

Answer:
$$det(A) = 15$$
, $A^{-1} = (1/15)$ [[7 1 -6], [-1 2 2], [2 -4 9]], $x = 13/5$, $y = 4/5$, $z = -11/15$.

7. (a) (i) Determine the most general function M(x, y) such that the differential equation M(x, y) dx + $(2x^2 y^2 + x^2 y)$ dy = 0 is exact.

For exactness: $\partial M/\partial y = \partial (2x^2 y^2 + x^2 y)/\partial x = 4x y^2 + 2x y$

$$M = \int (4x y^2 + 2x y) dy = 4x y^3/3 + x y^2 + f(x)$$

Answer: $M(x, y) = 4x y^3/3 + x y^2 + f(x)$.

7. (a) (ii) By separating the variables, solve the differential equation $(x + y^2) dx - (x^2 y^2 + x + y + 1) dy = 0$.

We are solving the differential equation:

$$(xy + x) dx - (x^2y^2 + x^2 + y^2 + 1) dy = 0$$

Write it as M(x, y) dx + N(x, y) dy = 0

$$M(x, y) = x(y + 1)$$

$$N(x, y) = -(x^2y^2 + x^2 + y^2 + 1)$$

Rewriting the equation:

$$dy/dx = (x(y + 1)) / (x^2y^2 + x^2 + y^2 + 1)$$

Factor the denominator

$$x^2y^2 + x^2 + y^2 + 1$$

$$= x^2(y^2 + 1) + (y^2 + 1)$$

$$=(y^2+1)(x^2+1)$$

Substitute the factorized denominator

$$dy/dx = (x(y+1)) / ((y^2 + 1)(x^2 + 1))$$

Step 4: Separate variables

Multiply both sides by $(y^2 + 1)$ dy and multiply both sides by dx denominator to isolate variables

$$(y^2 + 1) dy = (x(y + 1)) / (x^2 + 1) dx$$

Now, move all terms involving y to one side and x to the other

$$(y^2 + 1) / (y + 1) dy = (x) / (x^2 + 1) dx$$

Simplify left side

Divide $(y^2 + 1)$ by (y + 1) using polynomial division or factor if possible.

Let's divide:

$$(y^2 + 1) \div (y + 1)$$

$$=y^2 + 1 = (y + 1)(y - 1) + 2$$

So:

$$(y^2 + 1) / (y + 1) = y - 1 + 2 / (y + 1)$$

Now the separated equation is:

$$(y - 1 + 2 / (y + 1)) dy = (x) / (x^2 + 1) dx$$

Integrate both sides

$$\int (y-1) dy + \int (2/(y+1)) dy$$

$$= (1/2) y^2 - y + 2 \ln|y + 1|$$

Integrating right side:

$$\int x / (x^2 + 1) dx$$

Let
$$u = x^2 + 1$$
, then $du = 2x dx$

So,
$$(1/2) du = x dx$$

$$\int x / (x^2 + 1) dx = (1/2) \int du / u = (1/2) \ln|x^2 + 1|$$

$$(1/2)$$
 y² - y + 2 ln|y + 1| = $(1/2)$ ln|x² + 1| + C

7. (b) Find the general solution of the differential equation $\cos x \, d^2y/dx^2 - \sin x \, dy/dx = 0$.

$$\cos x d^2y/dx^2 - \sin x dy/dx = 0$$

$$\frac{d^2y}{dx^2} - (\sin x / \cos x) \frac{dy}{dx} = 0$$

Let u = dy/dx:

$$du/dx - (tan x) u = 0$$

$$du/u = tan x dx$$

$$ln|u| = -ln|cos x| + C$$

 $u = K / \cos x$

$$dy/dx = K / \cos x$$

$$y = K \int (1/\cos x) dx + D = K \ln|\tan(x/2 + \pi/4)| + D$$

Answer:
$$y = K \ln|\tan(x/2 + \pi/4)| + D$$
.

7. (c) A liquid of 72°C placed in a room at 25°C has a temperature of 65°C after 5 minutes. Find its temperature after further 10 minutes.

$$dT/dt = -k (T - 25)$$

$$T - 25 = C e^{(-kt)}$$

At
$$t = 0$$
, $T = 72$: $72 - 25 = C$, $C = 47$

At
$$t = 5$$
, $T = 65$: $65 - 25 = 47 e^{(-5k)}$, $40/47 = e^{(-5k)}$

$$ln(40/47) = -5k, k = -(1/5) ln(40/47)$$

At
$$t = 15$$
 (further 10 minutes): $T - 25 = 47 (40/47)^{4} (15/5) = 47 (40/47)^{3}$

$$(40/47)^3 \approx 0.617$$

$$T - 25 = 47 \times 0.617 \approx 29$$

$$T\approx 54\,$$

Answer: Temperature ≈ 54 °C.

7. (d) Formulate a differential equation of a circle which passes through the origin and whose centre lies on the y-axis.

Centre (0, k), passes through (0, 0):

$$x^2 + (y - k)^2 = k^2$$

$$x^2 + y^2 - 2ky = 0$$

Differentiate: $2x + 2y \frac{dy}{dx} - 2k \frac{dy}{dx} = 0$

$$x + y \, dy/dx - k \, dy/dx = 0$$

$$k = (x + y dy/dx) / (dy/dx)$$

Substitute into original: $x^2 + y^2 - 2(x + y \frac{dy}{dx}) / (\frac{dy}{dx}) y = 0$ (simplify as needed).

Answer:
$$x^2 + y^2 - 2(x + y \frac{dy}{dx}) / (\frac{dy}{dx}) y = 0$$
.

8. (a) Find the coordinates of the foci, the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16x^2 - 9y^2 = 576$.

$$16x^2 - 9y^2 = 576$$

$$x^2/36 - y^2/64 = 1$$

$$a = 6, b = 8$$

Foci:
$$(\pm \sqrt{(a^2 + b^2)}, 0) = (\pm \sqrt{(36 + 64)}, 0) = (\pm 10, 0)$$

Vertices: $(\pm a, 0) = (\pm 6, 0)$

Eccentricity: $e = \sqrt{(a^2 + b^2)} / a = 10/6 = 5/3$

Latus rectum: $2b^2/a = 2 \times 64 / 6 = 128/6 = 64/3$

Answer: Foci: $(\pm 10, 0)$, Vertices: $(\pm 6, 0)$, Eccentricity: 5/3, Latus rectum: 64/3.

8. (b) (i) Determine the equation of the normal to the ellipse $x^2/a^2 + y^2/b^2 = 1$ at the point P(a cos θ , b sin θ).

$$dy/dx = -(b^2 x) / (a^2 y)$$
, at P: $dy/dx = -(b^2 a \cos \theta) / (a^2 b \sin \theta) = -(b/a) \cot \theta$

Normal slope = $(a/b) \tan \theta$

Normal: $y - b \sin \theta = (a/b) \tan \theta (x - a \cos \theta)$

Simplify: $(a \times \sin \theta) / (\cos \theta) - (b \times \cos \theta) / (\sin \theta) = a^2 - b^2$

Answer: $(a \times \sin \theta) / (\cos \theta) - (b \times \cos \theta) / (\sin \theta) = a^2 - b^2$.

8. (b) (ii) If the normal in part (b) (i) meets the x-axis at A and the y-axis at B, find the area of the triangle AOB where O is the origin.

A: $((a^2 - b^2) \cos \theta / a, 0)$

B: $(0, (b^2 - a^2) \sin \theta / b)$

Area = $(1/2) | (a^2 - b^2) \cos \theta / a \times (b^2 - a^2) \sin \theta / b | = (a^2 - b^2)^2 | \sin \theta \cos \theta | / (2ab)$

Answer: Area = $(a^2 - b^2)^2 |\sin \theta \cos \theta| / (2ab)$.

8. (c) Show that the equation of the tangent to the parabola $y^2 = 4ax$ at the point (at², 2at) is $x - ty + at^2 = 0$.

$$y^2 = 4ax$$
, $dy/dx = 2a/y$, at $(at^2, 2at)$: $dy/dx = 2a / (2at) = 1/t$

Tangent: $y - 2at = (1/t) (x - at^2)$

$$ty - 2at^2 = x - at^2$$

$$x - ty + at^2 = 0$$

Answer: Proven.

8. (d) (i) Change the Cartesian equation $(x^2 + y^2)^2 - 2xy(x^2 - y^2) = 0$ into a polar equation.

$$x = r \cos \theta$$
, $y = r \sin \theta$

 $(x^2 + y^2)^2 - 2xy (x^2 - y^2) = (r^2)^2 - 2 (r \cos \theta r \sin \theta) (r^2 \cos^2 \theta - r^2 \sin^2 \theta) = r^4 - 2 r^4 \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta)$

$$= r^4 (1 - 2 \sin \theta \cos \theta (\cos 2\theta)) = r^4 (1 - \sin 2\theta \cos 2\theta) = 0$$

r = 0 or 1 - $\sin 2\theta \cos 2\theta = 0$ (simplify further if needed).

Answer: r = 0 or $1 - \sin 2\theta \cos 2\theta = 0$.

8. (d) (ii) Sketch the graph of $r = 1 - 2 \cos \theta$ from $\theta = 0$ to $\theta = 2\pi$.

 $r = 1 - 2 \cos \theta$ (limaçon with a loop):

$$\theta = 0$$
: $r = 1 - 2 = -1$

$$\theta = \pi/2$$
: r = 1 - 0 = 1

$$\theta = \pi$$
: $r = 1 + 2 = 3$

$$\theta = 3\pi/2$$
: $r = 1 - 0 = 1$

Graph: Limaçon with inner loop, symmetric about x-axis.

Answer: Limaçon with an inner loop.