THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/2

ADVANCED MATHEMATICS 2

(For Both School and Private Candidates)

Time: 3 Hours

Year : 2023

Instructions

- 1. This paper consists of sections A and B with a total of eight (8) questions.
- 2. Answer all questions in section A and two (2) questions from section B.
- 3. Section A carries sixty (60) marks and section B carries forty (40) marks.
- 4. All work done in answering each question must be shown clearly.
- 5. NECTA's mathematical tables and non-programmable calculators may be used.
- 6. All writing must be in **blue** or **black** ink **except** drawing which must be in pencil.
- 7. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 8. Write your **Examination Number** on every page of your answer booklet(s).

SECTION A (60 Marks)

Answer all questions in this section.

- 1. (a) In a school garden, 15 percent of tomatoes are on average defective. Prepare the probability distribution table of obtaining 0, 1, 2, 3, 4 and 5 defective tomatoes in a random batch of 20 tomatoes using:
 - (i) Binomial distribution,
 - (ii) Poison distribution.
 - (b) Compute the mean and standard deviation of the two cases in part (a).
 - (c) The mean and standard deviation recorded for 100 students in a senior Mathematics contest examination for the year 2014 were 64 and 16 respectively. Suppose their marks are normally distributed, find the number of students who scored between 30% and 70% inclusive.
 - 2. (a) By using laws of propositions of algebra, simplify $(P \to (Q \lor \sim R)) \to (P \land Q)$.
 - (b) Use the truth table to verify whether $\sim (P \leftrightarrow Q) \equiv (P \land \sim Q)$ or not.
 - (c) Test the validity of the argument: "Every time we celebrate my mother's birthday, I always bring her flowers. It is my mother's birthday or I wake up late. I did not bring her flowers. Therefore, I woke up late."
 - 3. (a) Show that the position vectors $2\underline{i} \underline{j} + \underline{k}$, $\underline{i} 3\underline{j} 5\underline{k}$ and $3\underline{i} 4\underline{j} 4\underline{k}$ mark the vertices of a right angled triangle.
 - (b) The vector \overrightarrow{PQ} has the magnitude of 5 units. If it is inclined at an angle of 150° to the x-axis, express \overrightarrow{PQ} in the form $a\underline{i}+bj$ where $a,b\in\Re$.
 - (c) A certain particle is displaced by the forces $\underline{F_1} = 2\underline{i} 5\underline{j} + 6\underline{k}$ and $\underline{F_2} = -\underline{i} 2\underline{j} \underline{k}$ from point A to B. If the position vectors of points A and B are $4\underline{i} 3\underline{j} 2\underline{k}$ and $6\underline{i} \underline{j} 3\underline{k}$ respectively, determine the work done by forces on the particle.
 - 4. (a) If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, show that $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$. Hence, verify that $\left| \frac{z-2}{z+3i} \right| = 4$ represents a circle.
 - (b) If α and β are two roots of the equation $Z^2 + 4Z + 8 = 0$, without solving the equation $Z^2 + 4Z + 8 = 0$, express $\frac{\alpha + \beta + 4i}{\alpha\beta + 8i}$ in its simplest form.
 - (c) Find all the complex roots of $z^3 = 1$.

SECTION B (40 Marks)

Answer two (2) questions from this section.

- 5. (a) Factorize $\cos \theta \cos 3\theta \cos 5\theta + \cos 7\theta$.
 - (b) Show that $\tan(A-B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$. Hence, find $\tan y$ if $\tan(2x + y) = 2$ and $\tan 2x = \frac{3}{2}$.
 - (c) Given that $\sin x = \frac{3}{5}$ and $\cos y = \frac{24}{25}$, where angle x is obtuse and angle y is acute, find the exact values of $\cos(x+y)$ and $\cot(x-y)$.
 - (d) Express $3\sin x 2\cos x$ in the form $R\sin(x-\beta)$.
 - (e) Use the results obtained in part (d) to solve the equation $3\sin x 2\cos x = 1$.
- 6. (a) Use the Binomial theorem to expand $\frac{1}{(4-x)^2}$ in ascending powers of x up to the term containing x^3 .
 - (b) Find the partial fractions of the expression $\frac{x^2 2x + 1}{(x+1)^2}$.
 - (c) If α , β and μ are the roots of the equation $2x^3 x^2 + 1 = 0$, find the equation whose roots are $\alpha + 1$, $\beta + 1$ and $\mu + 1$.
 - (d) Without using a calculator, find the inverse of $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & -2 & -2 \end{pmatrix}$.
 - (e) Use the inverse obtained in part (d) to solve the system of the simultaneous equations $\begin{cases} x+y+z=2\\ 2x-3y+4z=-4.\\ 3x-2y+4z=-9 \end{cases}$
 - 7. (a) Show that $y = Ae^{2x}\cos(3x + \varepsilon)$ is a solution of the differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 13y = 0$, where ε is an arbitrary constant.
 - (b) Find the general solution of the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 6e^x + \sin x.$
 - (c) Solve the differential equation $(2x-1)\frac{d^2y}{dx^2} 2\frac{dy}{dx} = 0$, given that when x = 0, y = 2 and $\frac{dy}{dx} = 3$.
 - (d) The rate of increase in the population of a certain village is proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in the

- year 1999 and 25,000 in the year 2004, what was the population of the village in 2009?
- 8. (a) A point moves so that its distance from the point (3,2) is half its distance from the line 2x+3y=1.
 - (i) Show that the locus of the point is a circle.
 - (ii) What is the centre and radius of the circle?
 - (b) Show that the equation of a normal at the point $(a\cos\theta, b\sin\theta)$ to the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ is $ax\sin\theta by\cos\theta = (a^2 b^2)\sin\theta\cos\theta$.
 - (c) If the normal at P in part (b) meets the x-axis at Q and the y-axis at R, find the greatest value of the area of the triangle OQR, where O is the origin.
 - (d) Sketch the graph of $r^2 = a^2 \sin 2\theta$.