THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

133/3A

BIOLOGY 3A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2017

Instructions

- 1. This paper consists of three questions.
- 2. Answer all questions.

- 1. You have been provided with specimen S_1 . Dissect the specimen S_1 in a usual way to fully display the digestive system. Pin the ileum to the right side of the animal.
- (a) Draw a large, neat, well labelled diagram of your dissection. Leave your dissection properly displayed for assessment.

- (b) (i) How does the ileum in the specimen S₁ modified to suit its function?
- It is long and coiled to increase the surface area for absorption.
- It has numerous villi and microvilli to enhance nutrient absorption.
- It is richly supplied with blood capillaries to transport absorbed nutrients.
- The inner lining contains enzymes for final digestion of food.
- (ii) How does specimen S₁ adapt to its mode of life?
- Possesses strong limbs for locomotion or burrowing depending on its habitat.
- Has protective coloration for camouflage against predators.
- Has well-developed sense organs (e.g. eyes, nose) to detect food or danger.
- Efficient digestive and respiratory systems for energy and survival.
- Behavioral adaptations like nocturnality or hiding enhance survival.
- 2. You are provided with solutions S₂ and S₃.
- (a) Using the reagents provided, carry out a biochemical test to identify the food substances present in solutions S_2 and S_3 . Tabulate your work as shown in the following table:

Food	Tested	Procedure	Observ	vation	Inference	
$ S_2 $	Add Ber	nedict's solution an	d heat Brick-re	ed precipitate forms	Reducing sugar present	

- | S₃ | Add dilute HCl, heat, then neutralize with NaOH, add Benedict's solution and heat | Brick-red precipitate forms | Non-reducing sugar present (after hydrolysis) |
- (b) Why do we use sodium hydroxide and dilute hydrochloric acid in the biochemical experiment?
- Dilute hydrochloric acid hydrolyzes non-reducing sugars (e.g. sucrose) into reducing sugars.
- Sodium hydroxide is used to neutralize the solution after hydrolysis to allow Benedict's test to work properly (Benedict's solution requires neutral or slightly alkaline conditions).
- 3. You have been provided with specimens G₃, G₄, G₅, and G₆.
- (a)
- (i) Identify the specimens G₃, G₄, G₅ and G₆ by their common names.
- G₃ Grasshopper
- G_4 Butterfly
- G_5 Housefly
- G_6 Mosquito
- (ii) Classify G₄, G₅ and G₆ to class level.

Kingdom: Animalia Phylum: Arthropoda

Class: Insecta

- (b) What are the observable differences between the specimens G₄ and G₆ at Class level?
- G₄ (Butterfly) has broad wings with scales, while G₆ (Mosquito) has narrow wings.
- G₄ has a long proboscis for sucking nectar, while G₆ has a piercing-sucking mouthpart.
- G₄ is diurnal (active during the day), G₆ is often nocturnal.
- (c) In what ways are the specimens G₄ and G₆ important in the ecosystem?
- G₄ (Butterfly) Important for pollination of flowering plants.
- G₆ (Mosquito) Plays a role in food chains and pollination (females may also transmit diseases, but larvae help in decomposition in aquatic habitats).
- (d) Where can we find the specimen G₆?

In stagnant water areas such as ponds, ditches, containers, and marshes, especially during the breeding season.