THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

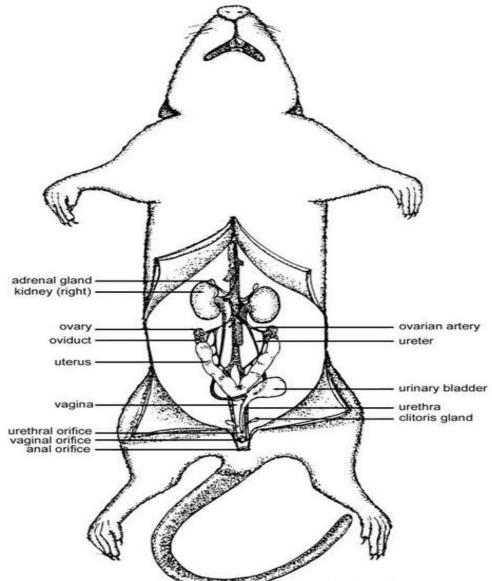
ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

133/3A

BIOLOGY 3B

(ACTUAL PRACTICAL B)

(For Both School and Private Candidates)


Time: 2:30 Hours ANSWERS Year: 1996

Instructions

- 1. This paper consists of three questions.
- 2. Answer all questions.

- 1. You have been provided with specimen S_1 . Dissect it in the usual way to fully display the reproductive and excretory systems. Deflect the digestive system to your right-hand side to clearly show the systems asked for.
- (a) Make a large, neat well labelled diagram of your dissection.

- (b) Carefully examine the excretory system with a hand lens and state the structural adaptations which help to increase the total surface area for secretion and excretion.
- Highly convoluted tubules to increase surface area
- Presence of glomeruli in kidneys for filtration
- Numerous nephrons in kidney tissue
- Thin walls of renal tubules for diffusion

(c) Name the structu	ures in the reproduc	tive system of th	ne animal that	are responsible fo	or gamete
production.					

- Testes (male)
- Ovaries (female)

(d) LEAVE YOUR DISSECTION PROPERLY DISPLAYED FOR ASSESSMENT.

2. Using the chemicals and reagents provided, carry out food tests to identify the different food substances which may be present in specimens A and B. Also provided: Benedict's, Biuret, iodine, and dilute HCl/NaOH.

Food substance tested Procedure	Observation	Inference
	1	1
Starch Add iodine solution	Blue-black colorat	Reducing sugar present ion Starch present
Protein Add NaOH and CuSO4 (Biuret test) Non-reducing sugar Hydrolyze with HCl, neutralii Non-reducing sugar present	_	Protein present rick-red precipitate
 3. (a) Study specimen S₂ carefully. (i) Give the common name for S₂. Fern 		

- (ii) To which phylum does S₂ belong? Pteridophyta
- (iii) Make a drawing of S₂ and label the sporophyte phase and gametophyte phase.
- Sporophyte: Fronds, rhizome
- Gametophyte: Prothallus
- (iv) What two features make S₂ more adapted to terrestrial habitat than its close relatives in Class Hepaticae?
- Vascular tissues (xylem and phloem)
- Well-developed roots and leaves
- (b) Study specimens S₃ and S₄.
- (i) Name the classes to which each of them belongs.
- S₃ ----> Monocotyledonae
- S4 ----> Dicotyledonae
- (ii) What features helped you classify the two specimens into their respective classes?

- Leaf venation (parallel in monocots, netted in dicots)
- Number of cotyledons (1 vs 2)
- Number of floral parts (multiples of 3 vs 4/5)
- (iii) What features do S2 and S4 have in common?
- True roots
- Vascular tissues
- 4. Specimens S₅, S₆ and S₇: Use a sharp scalpel to make a longitudinal cut of S₅.
- (a) What type of placentation is displayed by S₅? Axile placentation
- (b) Write down the floral formula for S₅, S₆ and S₇.

Assuming typical structure:

- S₅: Br, actinomorphic, bisexual, K(5) C(5) A(5) G(2)
- S₆: Br, zygomorphic, bisexual, K(5) C(3+2) A(9)+1 G(1)
- S₇: Br, actinomorphic, unisexual, K(3) C(3) A(6) G(1)
- (c) Using the key provided, classify specimens S₅, S₆ and S₇ and identify the correct families.

For S₅:

- 1b. Flower bisexual
- 2b. Flower regular
- 3a. Sepals fused with ovary capsule ----> POLYGALACEAE

For S₆:

- 1b. Flower bisexual
- 2b. Flower irregular
- 3b. Without stipules and many seeds ----> BALSAMINACEAE

For S7:

- 1a. Flower unisexual
- 8b. More than one style ----> STERCULIACEAE