THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION **EXAMINATION**

132/1

CHEMISTRY 1

(For Both School and Private Candidates)

Time: 2:30 Hours

Monday, 13th February, 2012 p.m.

Instructions

- This paper consists of fourteen (14) questions in sections A, B and C. 1.
- Answer four (4) questions from section A and three (3) questions from each of sections B and 2.
- Each question carries ten (10) marks. 3.
- Mathematical tables and non-programmable calculators may be used. 4.
- Cellular phones are not allowed in the examination room. 5.
- Write your Examination Number on every page of your answer booklet(s). 6.
- For calculations you may use the following constants: 7.

Gas constant, $R = 8.31 \text{ Jmol}^{-1} \text{ K}^{-1} \text{ or } 0.0821 \text{ atm mol}^{-1} \text{ K}^{-1} \text{ dm}^3$

 $GMV = 22.4 \text{ dm}^3$

 $11itre = 1dm^3 = 1000 cm^3$

Temperature = 273 K

Pressure = 760 mmHg

Planck constant, $h = 6.63 \times 10^{-34} Js$

Velocity of light, $c = 3.0 \times 10^8 \text{ m/s}$

Atomic masses: H = 1,

C = 12, N = 14,

O = 16,

S = 32,

C1 = 35.5,

K = 39.

Mn = 55,

Fe = 56.

SECTION A (40 marks)

Answer four (4) questions from this section.

1. (a) Define mass spectrometer.

(1 mark)

(b) Given below are the naturally occurring isotopes of oxygen:

Element	Isotopic mass	Relative abundance %
	$^{16}O = 15.995$	99.76
Oxygen	$^{17}O = 16.999$	0.04
	$^{18}O = 17.969$	0.20

Calculate the relative atomic mass of oxygen.

(2 marks)

- (c) Write the products of the following changes:
 - (i) Alpha decay of ${}^{24}_{12}$ Mg and ${}^{8}_{4}$ Be.
 - (ii) Beta decay of ${}^{14}_{6}$ C and ${}^{31}_{14}$ Si.

(4 marks)

(d) If the wavelength of the first line in the Balmer series in a hydrogen spectrum is 6863 Å, calculate the wavelength of the first line in the Lyman series in the same spectrum.

(3 marks)

2. The remains of an ancient fire in a cave in Africa shows a ¹⁴₆C decay rate of 3.1 counts per minute per gram of carbon. Assuming that the decay rate of ¹⁴₆C in a freshly cut wood is 13.6 count per minute per gram of carbon, calculate the age of the remains, given the half life of ¹⁴₆C is 5730 years.

(10 marks)

- 3. (a) Briefly explain the following terms:
 - (i) reversible reaction
 - (ii) rate constant.

(2 marks)

- (b) The reaction $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$, $-\Delta H$ kJ; attains its equilibrium at 47 °C. Study the reaction careful and then answer the following questions:
 - (i) State whether the reaction is endothermic or exothermic.
 - (ii) How will the yield of HI be affected if
 - pressure is increased?
 - temperature is increased?
 - an inert gas is added?
 - (iii) Write the expression for the equilibrium constant in terms of partial pressures.

(iv) At 47 °C, analysis of an equilibrium mixture of the gases yielded the following results:

 $P_{H_2} = 2.5 \times 10^{-1} \text{ atm.}, \quad P_{I_2} = 1.6 \times 10^{-1} \text{ atm. and } P_{H_1} = 4.0 \times 10^{-1} \text{ atm.}$

Calculate the equilibrium constant for the reaction. (8 marks)

- 4. (a) State the following:
 - (i) Boyle's law
 - (ii) Charles' law
 - (iii) Dalton's law of partial pressures.

(3 marks)

- (b) A sample of PCl₅ weighing 2.69 g was placed in a 1.00 litre flask and completely vaporized at a temperature of 250 °C. The pressure observed at this temperature was 1 atmosphere. The possibility exists that some of the PCl₅ may have dissociated according to equation $PCl_{5(g)}
 ightharpoonup PCl_{3(g)} + Cl_{2(g)}$. Calculate the partial pressures of PCl₅, PCl₃ and Cl₂ under the given experimental conditions. (7 marks)
- 5. (a) List four colligative properties of a solution.

(2 marks)

- (b) Considering that heptane and octane are liquids that form an ideal solution, answer the following questions:
 - (i) Give a mathematical expression for Raoult's vapour pressure law for a solution of two liquids and state each symbol used.
 - (ii) Under what conditions will a mixture of two liquids behave as an ideal solution?
 - (iii) Calculate the vapour pressure of a solution containing 50 g heptane (C₇H₁₆) and 38 g octane (C₈H₁₈) at 20 °C; given that the vapour pressures of heptane and octane at 20°C are 473.2 Pa and 139.8 Pa, respectively. (8 marks)
- 6. (a) Briefly explain the following terms:
 - (i) Miscible liquids.
 - (ii) Immiscible liquids.
 - (iii) Partially miscible liquids.
 - (iv) Partition law.

(4 marks)

(b) 10 grams of compound Q were dissolved in one litre of distilled water. When one litre of the solution formed was shaken with 100 cm³ of ethoxyethane, 6 grams of compound Q were extracted. Calculate the amount of Q extracted from the solution residue after further shaking with 100 cm³ of ethoxyethane. Assume that the molecular state of the solute is the same in ethoxyethane and in water.
(6 marks)

(iv) At 47 °C, analysis of an equilibrium mixture of the gases yielded the following results:

 $P_{H_2} = 2.5 \times 10^{-1} \text{ atm.}, \quad P_{I_2} = 1.6 \times 10^{-1} \text{ atm. and} \quad P_{H_I} = 4.0 \times 10^{-1} \text{ atm.}$

Calculate the equilibrium constant for the reaction.

- 4. (a) State the following:
 - (i) Boyle's law
 - (ii) Charles' law
 - (iii) Dalton's law of partial pressures.

(3 marks)

(8 marks)

- (b) A sample of PCl_5 weighing 2.69 g was placed in a 1.00 litre flask and completely vaporized at a temperature of 250 °C. The pressure observed at this temperature was 1 atmosphere. The possibility exists that some of the PCl_5 may have dissociated according to equation $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$. Calculate the partial pressures of PCl_5 , PCl_3 and PCl_5 under the given experimental conditions. (7 marks)
- 5. (a) List four colligative properties of a solution.

(2 marks)

- (b) Considering that heptane and octane are liquids that form an ideal solution, answer the following questions:
 - (i) Give a mathematical expression for Raoult's vapour pressure law for a solution of two liquids and state each symbol used.
 - (ii) Under what conditions will a mixture of two liquids behave as an ideal solution?
 - (iii) Calculate the vapour pressure of a solution containing 50 g heptane (C₇H₁₆) and 38 g octane (C₈H₁₈) at 20 °C; given that the vapour pressures of heptane and octane at 20°C are 473.2 Pa and 139.8 Pa, respectively. (8 marks)
- 6. (a) Briefly explain the following terms:
 - (i) Miscible liquids.
 - (ii) Immiscible liquids.
 - (iii) Partially miscible liquids.
 - (iv) Partition law.

(4 marks)

(b) 10 grams of compound Q were dissolved in one litre of distilled water. When one litre of the solution formed was shaken with 100 cm³ of ethoxyethane, 6 grams of compound Q were extracted. Calculate the amount of Q extracted from the solution residue after further shaking with 100 cm³ of ethoxyethane. Assume that the molecular state of the solute is the same in ethoxyethane and in water. (6 marks)

SECTION B (30 marks)

Answer three (3) questions from this section.

7.	(a)	 Explain the following laboratory observations. (i) When potassium permanganate is used in volumetric analysis it is acidificult dilute sulphuric acid but not dilute hydrochloric acid or nitric acid. (ii) Aqueous sodium hydroxide absorbs carbon dioxide readily but it is never the gas. 	
	(b)	0.1 M aqueous potassium permanganate. Calculate the volume of potassium pe	ated against ermanganate 6 marks)
8.	(a)	olain briefly the following facts: Nitric acid can be stored in aluminium tanks but not sulphuric acid or sodium (2)	hydroxide. 2 marks)
	(b)	Galvanized iron sheets rust less rapidly than tinned iron sheets.	2 marks)
	(c)		2 marks)
	(d)	Sodium carbonate can not precipitate lead carbonate from aqueous solution o	f lead ions.
		· ·	2 marks)
	(e)	Calcium phosphate is soluble in dilute HCl but calcium sulphate is insoluble in	dilute HCl.
		(2	2 marks)
9.	(a) (b) (c)	Describe four similarities of lithium and magnesium.	marks) marks)
	(0)	Describe the differences between graphite and diamond basing on the following (i) Hardness.	properties:
		(ii) Electrical and thermal conductivity.	
		(iii) I ulariantina annulitina	· · morte)
		(3	marks)
10. Element X which exists in gaseous form is more reactive than Y which exists in liquid form hydride of Y is a stronger acid than that of X. X does not disproportionates in water, whi does. Although Y is not reactive as X it disproportionates in the cold and dilute or even in the and concentrated alkali while X does not. Both X and Y are the most electronegative element their respective periods. The reactive element X shows only negative oxidation state whi shows negative and positive oxidation states. Basing on the given information:			
	(a) (b)	Identify X and Y. Explain why X exists in gaseous form while Y is in liquid form. (1)	mark) marks)
(c) Give the equations of the reactions of X and Y with water, hot and concenwell as cold and dilute alkali.		ed alkali as	
	(d)	Explain why X shows only negative oxidation state while Y shows both negative oxidation states.	
	(e)	Which one will displace the other in an aqueous solution of its salt? Explain why	marks) /.

Page 4 of 7

(2 marks)

SECTION C (30 marks)

Answer three (3) questions from this section.

- 11. (a) Name the following organic compounds according to IUPAC rules.
 - CH₃CH₃ CH-C-CH₂CH₂CH₃ CH₃CH₃
 - (ii) CH₃CH=CHCH=CHCH₂CH₃

(5 marks)

- (b) Write the structural formulae of the following:
 - (i) Cyclo octa 1,3,5,7-tetraene.
 - (ii) 2,2 dimethyl 3,4 diethylheptane.
 - (iii) 2-hydroxyl benzoic acid.
 - (iv) Butane 1,2,3,triol.
 - (v) Phenylethanone.

(5 marks)

SECTION C (30 marks)

Answer three (3) questions from this section.

- 11. (a) Name the following organic compounds according to IUPAC rules.
 - CH₃CH₃ CH-C-CH₂CH₂CH₃ CH₃CH₃
 - (ii) CH₃CH=CHCH=CHCH₂CH₃

(v)
$$O$$
CHO

(5 marks)

- (b) Write the structural formulae of the following:
 - (i) Cyclo octa 1,3,5,7-tetraene.
 - (ii) 2,2 dimethyl 3,4 diethylheptane.
 - (iii) 2-hydroxyl benzoic acid.
 - (iv) Butane 1,2,3,triol.
 - (v) Phenylethanone.

(5 marks)

12. The following is a full structural formula of a certain organic molecule P. Study the structure and then answer the questions that follow:

- (a) If the molecule gives a positive iodoform test,
 - (i) what are the reagents and conditions for the test?
 - (ii) show on the formula which part of the molecule P gives the tri-iodomethane.

(4 marks)

(b) Indicate on the formula the part of the molecule which will react with 2,4-dinitrophenylhdrazine.

(2 marks)

(c) Explain whether **P** would give a positive reaction with $[Ag(NH_3)_2]^+$.

(2 marks)

- (d) If molecule P reacts with aqueous sodium hydroxide then
 - (i) name the group in P which is attacked by sodium hydroxide.
 - (ii) draw the structure of the product formed by the reaction.

(2 marks)

- 13. (a) Write the reaction steps to show how to convert the following organic compounds:
 - (i) Benzophenone to diphenyl methane.
 - (ii) Toluene to benzyl alcohol.
 - (iii) Acetone to propyne.
 - (iv) Propanal to 1-phenyl-1-propanol.

(6 marks)

- (b) Distinguish the following compounds:
 - (i) Phenol from chlorobenzene.
 - (ii) Acetone from propyne.

(4 marks)

14. (a) You are given the following compounds:

$$\mathbf{A} = \mathbf{CH_3CH_2OH} \quad \cdot \quad \mathbf{B} = \mathbf{O} \quad \mathbf{CH_3} \quad \mathbf{C} = \mathbf{O} \quad \mathbf{D} = \mathbf{O} \quad \mathbf{NOR}$$

Arange the given compounds in order of

- (i) increasing acidity
- (ii) increasing basic strength.

(2 marks)

(b) Outline how the following conversions can be achieved in not more than four steps;

- (c) Substance A is represented by a molecular formula C₅H₁₂O. A undergoes oxidation with acidified potassium permanganate to give compound B which forms a crystalline derivative with 2,4-dinitrophenyl hydrazine, but does not react with a mixture of iodine and sodium hydroxide.
 - (i) Write down the structural formulae of compounds A and B.
 - (ii) Show by means of an equation, how B reacts with 2,4-dinitrophenyl hydrazine.

(4 marks)