

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/1

CHEMISTRY 1

(For Both School and Private Candidates)

Time: 3 Hours

Thursday, 04th May, 2017 a.m.

Instructions

- 1. This paper consists of fourteen (14) questions in sections A, B and C.
- 2. Answer four (4) questions from section A and three (3) questions from each of sections B and C.
- 3. Each question carries ten (10) marks.
- Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. For calculations you may use the following constants:
 - Rydberg constant R_H = 1.09678 x 10⁷ m⁻¹
 - Gas constant, $R = 8.31 \text{ Jmol}^{-1} \text{ K}^{-1} \text{ or } 0.0821 \text{ atm mol}^{-1} \text{ K}^{-1} \text{ dm}^3$
 - $GMV = 22.4 \text{ dm}^3$
 - Standard temperature = 273 K
 - Standard pressure = 760 mmHg
 - Planck's constant, $h = 6.63 \times 10^{-34} Js$
 - Velocity of light, c = 3.0 x 10⁸ m/s
 - Mass of an electron = $9.11 \times 10^{-31} \text{ kg}$.

SECTION A (40 Marks)

Answer four (4) questions from this section.

	(a)	Distinguish between the following:			
		(i) Isotopes and isotopy.			
		(ii) Azimuthal quantum number and magnetic quantum number.	(3 marks)		
		(iii) Atomic mass unit and relative atomic mass.			
		t and atomic numb	er is 31 indicated		
	(b)	The mass spectrographic measurements of an element X whose atomic number is 31 indicated peaks at 79.21, 11.2 and 9.59. The isotopic masses are 69, 70 and 71 atomic mass unit (a.m.u)			
		respectively.	(1.5 marks)		
		(i) Write the conventional symbols for the three isotopes.	(3 marks)		
		(ii) Calculate the relative atomic mass of X.	(1 mark)		
		(iii) Explain why atomic weights of elements are not whole numbers.	(1 1111111)		
			are 235 and 238		
	(c)	The mass number of two atoms, A and B with the same atomic number respectively. If A contains 143 neutrons in its nucleus, find the number of neutrons in	rons and electrons (1.5 marks)		
		in B.			
2.	(2)	Define the following:			
۵.	(a)				
			(1.5 marks)		
		(iii) Valence electrons.	(ALC IIIII III)		
	(b)	Summarise three major ideas of the Valence Shell Electron Pair Repulsion (VSE	PR) theory. (1.5 marks)		
	(c)	Outline four differences between sigma and pi bonds.	(4 marks)		
	(d)	Determine the name of a geometrical structure and one example of the molecule formed from the ollowing hybridized orbitals.			
		(i) Sp ² . (ii) Sp ² .			
		(ii) Sp [*] . (iii) Sp.			
		(ш) эр.	(3 marks)		
3	(a)	(i) Write two similarities between diffusion and effusion.	2.		
	(4)	(ii) The rate of effusion of unknown gas was measured to be 24.0 mL/min conditions, the measured rate of effusion of pure methane was 47.8 mL molar mass of the unknown gas?	(1 mark) 1. Under the same /min. What is the		
			(3 marks)		
	(b)	Using the kinetic theory of gases, state four properties of an ideal gas.	(2 marks)		
	(c)	A sample of ammonia gas with a volume of 3.5 dm ³ at a pressure of 1.50			
		A sample of ammonia gas with a volume of 3.5 dm ³ at a pressure of 1.68 atm was compressed to			
		(i) Calculate the final pressure of the gas			
		(ii) Name and state the governing gas law in question 3(c)(i).	(3 marks)		
		(4)(1).	(1 mark)		

- 4. (a) Define the following:
 - (i) Relative density of a gas.
 - (ii) Normal density of a gas.

(1 mark)

- (b) Show that the relative molecular mass of a gas is twice its relative vapour density. (3 marks)
- (c) (i) A determination of the density of ethanoic acid vapour at 1 atm pressure and 400 K gave a result of 2.74 g/dm³. Assuming ideal condition, calculate the apparent molecular weight of ethanoic acid under these conditions.

(ii) What can you deduce from your results in 4(c)(i)? Briefly explain.

(3.5 marks)

(d) A 0.0721 g of water vaporised at 150 °C and 755 mmHg pressure occupied a volume of 140 cm³. Show that the relative molecular mass of water vapour proves the formula for steam.

(2.5 marks)

5. (a) (i) Give the meaning of osmotic pressure of a solution.

(1 mark)

- (ii) Briefly explain in terms of vapour pressure why the freezing point of a solution is lower than that of a pure solvent. (1 mark)
- (b) When water and ice are mixed, the temperature of the mixture is 0 °C, but, if methanol (CH₃OH) and ice are mixed, a temperature of +10 °C is readily attained. Explain why the two mixtures show such different temperature behaviours.
 (2 marks)
- (c) Calculate the molar mass of Y given that a solution of 60 g of Y in 1 dm³ of water exerts an osmotic pressure of 4.31 x10⁵ Nm⁻² at 25 °C. (2.5 marks)
- (d) A 0.003 kg of acetic acid (CH₃COOH) is added to 500 cm³ of water. If 23% of the acid is dissociated, what will be the depression in freezing point? (K_f for water = 1.86 °Ckg/mol, density of water = 0.997 g/cm³).
 (3.5 marks)
- 6. (a) (i) Define vapour pressure.

(0.5 mark)

- (ii) Using Raoult's law of vapour pressure, show that the lowering of vapour pressure is proportional to the mole fraction of the solute. (2 marks)
- (b) Briefly explain why the solution becomes ideal when it is made more dilute. (2 marks)
- (c) Two liquids A and B form an ideal solution when mixed. At 298 K, the vapour pressure of pure A and B for a mixture of 1 mole of A and 3 moles of B are 32 kPa and 16 kPa, respectively. Calculate;

(i) the vapour pressure of the mixture.

(3 marks)

(ii) the mole fraction of A in the vapour which is in equilibrium with the mixture.

(2.5 marks)

SECTION B (30 Marks)

Answer three (3) questions from this section.

7. (a) (i) Briefly explain the principle of solvent extraction.

(3 marks)

(ii) Compare and contrast fractional distillation from steam distillation.

Page 3 of 7

(3 marks)

- (b) Steam distillation of a mixture of an organic compound B and water at 98 °C and pressure of 101320 Pa violet 1 and 101320 Pa violet 2 101320 Pa yielded a distillate containing 31.6% by volume of B. The vapour pressure of pure water at this town water at this temperature is 94260 Pa. The densities of B and water are 0.961 g/cm³ and 1.000 g/cm³, respectively. g/cm³, respectively. Calculate the relative molecular mass of B.
- 8. (a) Define the following:
 - Standard enthalpy change of neutralization.
 - (ii) Heat of solution.
 - (2 marks) (iii) Bond energy.
 - (iv) Standard enthalpy change of combustion.
 - (b) Differentiate between:
 - Lattice energy and energy of reaction. (i)
 - (ii) Standard molar enthalpy change of dissolution and heat of combustion.

(2 marks)

(c) Given the standard enthalpy change of combustion of hydrogen, $\Delta H^{o} = -286$ kJ/mol; carbon, $\Delta H^{o} = -394 \text{ kJ/mol}$; methane, $\Delta H^{o} = -890 \text{ kJ/mol}$; Ethane, $\Delta H^{o} = -1390 \text{ kJ/mol}$ and heat of formation of CH3CH3OH is -276 kJ/mol, calculate in kJ/mol the enthalpy change;

(i)	of formation of methane.	(1.5 marks)	
(ii)	of formation of ethene.	(1.5 marks)	
200) for the reaction CH ₂ =CH ₂ (g) + H ₂ O(g) → CH ₃ CH ₂ OH(g)	(1.5 marks)	
(iv)	of combustion of 4.48 dm ³ of ethane.	(1.5 marks)	

9. (a) Study carefully the information in the following table and then answer the questions that follow.

Process	$\Delta H_{298\text{K}}^{\circ} \text{ (kJ mol}^{-1}\text{)}$
$Na(s) \rightarrow Na(g)$	+108
$\tfrac{1}{2}\operatorname{Cl}_2(g) \to \operatorname{Cl}(g)$	+121
$Na(g) \rightarrow Na^{+}(g) + e^{-}$	+496
$Cl(g) + e^- \rightarrow Cl^-(g)$	-349
$NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$	+787
$NaCl(s) + H_2O(l) \rightarrow Na^+(aq) + Cl^-(aq)$	+4.0

- Calculate the enthalpy change for the process $2Cl(g) \rightarrow Cl_2(g)$.
- (ii) Calculate the standard molar enthalpy change for the process: $Na(s) + \frac{1}{2}Cl_2(g) \rightarrow Na^+(g) + Cl^-(g)$.

(1 mark)

(iii) Compare the different between enthalpy change for the processes: NaCl(s) \rightarrow Na⁺(g) + Cl(an) \rightarrow Na⁺(g) \rightarrow (g) and NaCl(s) + H₂O (l) \rightarrow Na⁺(aq) + Cl⁻(aq), and then comment on the differences.

(0.5 mark)

(b) Magnesium will displace copper from copper (II) sulphate solution according to the equation: $CuSO_4(aq) + Mg(s) \longrightarrow Cu(s) + MgSO_4(aq)$.

When an excess of magnesium was added to 100 cm3 of 0.1 mol dm3 copper(II) sulphate, the temperature increased by 46.3 °C. It is known that density and specific heat capacity of the solution are 1.0 g cm⁻³ and 4.18 J g⁻¹ °C⁻¹, respectively. Calculate:

The molar enthalpy change for the reaction.

(4 marks)

(ii) Minimum quantity of magnesium required.

(2 marks)

(iii) The change in temperature if only 0.8 g magnesium was added.

(1 mark)

10. (a) Differentiate between the following:

Equilibrium constant, K., and rate constant, K. (i)

(ii) Equilibrium position and rate of reaction.

(2 marks)

(b) Consider the following reversible equilibrium:

 $2C_2H_6(g) + 7O_2(g)$ \longrightarrow $4CO_2(g) + 6H_2O(l)$

Write down the Kc and Kp expressions.

(1 mark)

(ii) Derive the relationship between K_e and K_p.

(3 marks)

(c) A 7.52 cm3 of a gas H was mixed with 7.0 cm3 of a gas Q in a one litre flask at 298 K. At equilibrium, 10.93 cm3 of gas HQ was formed. Calculate the equilibrium constant, Kc for the reaction:

 $H_2(g) + Q_2(g) \longrightarrow 2HQ(g)$

(4 marks)

SECTION C (30 Marks)

Answer three (3) questions from this section.

- 11. (a) Using one appropriate example in each case, briefly explain the meaning of the following terms:
 - Homologous series. (i)
 - (ii) Functional group.
 - (iii) Unsaturated hydrocarbon.

(iv) Alkyl group.

(4 marks)

- (b) Write the formula of the following alkyl groups:
 - (i) Methyl group.
 - (ii) Butyl group.
 - (iii) Ethyl group.

(iv) Propyl.

(2 marks)

(c) Complete the following reactions:

- (i) CaC_2 (s) + $2H_2O$ (l) cold
- (ii) CH₃CH₂OH Conc.H₂SO₄
 Heat
- (iii) CH₃CH₂Cl + KOH Alcohol Heat
- (iv) $CH_3CH=CH_2+H_2O \xrightarrow{H^+}$ (4 marks)

12. (a) Define the following terms:

- (i) Resonance energy.
- (ii) Aromatic compound.

(2 marks)

- (b) Briefly explain why methyl benzene (toluene) is more reactive than benzene. (1 mark)
- (c) Write equations to show what will happen when methyl benzene is
 - (i) treated with chloromethane (CH₃Cl) in presence of aluminium chloride (AlCl₃).
 - (ii) treated with chlorine in presence of ultraviolet (uv) light.
 - (iii) refluxed with potassium manganate (VII) (KMnO₄) in the presence of an acid.
 - (iv) burnt in excess oxygen.

(4 marks)

(d) Indicate in the following aromatic compounds, which substituent group entered first. Give reason(s) for your answer.

(3 marks)

13. (a) Briefly explain why alkyl chlorides are not friendly to the environment.

(1 mark)

- (b) Write the structures of the following alkyl halides:
 - (i) 2-chloro-3-methylpentane.
 - (ii) Pent-2-ene.

(1 mark)

(c) Give IUPAC names of the following compounds:

- CICH2C ≡ CCH2Br (ii)
- CHF₂CBrClF (iii)
- CCl₃CHClCCl₃ (iv)

(4 marks)

- (d) A primary alkyl halide, A, (C4H9Br) reacted with alcoholic KOH to give compound B. Compound B reacted with HBr to give C which is an isomer of A. When C (in ether solution) reacted with Na metal, it gave compound D (C8H18).
 - Give the structure of A. (i)

(1 mark)

Write equations for all the reactions.

(3 marks)

14. (a) State Markovnikoff's rule.

(I mark)

- (b) By indicating whether the reaction will involve side chain, aromatic ring or both, write chemical equations showing the reaction between phenylethene (styrene) and:
 - Br2.
 - (ii) H₂, (Pt) at 25°C.
 - (iii) H2, (Pt) at 200 °C.

(3 marks)

(c) Complete the following reactions:

(3 marks)

- (d) Arrange the following set of compounds in order of decreasing relative reactivity to an
 - chlorobenzene, 2,4-dinitrobenzene, 4-nitrochlorobenzene. electrophile E+:

(3 marks)

methylbenzene, 4-nitromethylbenzene, 2,4-dinitromethylbenzene.

Page 7 of 7