THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/2

CHEMISTRY 2

(For Both School and Private Candidates)

Time: 2:30 Hours

Tuesday, 15th February 2011 a.m.

INSTRUCTIONS

- 1. This paper consists of ten (10) questions in sections A, B and C.
- 2. Answer five (5) questions choosing at least one (1) question from each section.
- 3. Each question carries twenty (20) marks.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. For calculations you may use the following constants:

Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ or } 0.082 \text{ atm mol}^{-1} \text{ K}^{-1} \text{ dm}^3$

 $GMV = 22.4 \text{ dm}^3$

 $1 \text{ litre} = 1 \text{ dm}^3 = 1000 \text{ cm}^3$

1 faraday = 95,500 coulombs

Velocity of light, $C = 3.0 \times 10^8 \text{ m/s}$

Atomic masses: H = 1,

C = 12,

N = 14,

O = 16,

Na = 23,

S = 32,

C1 = 35.5,

K = 39.

Cr = 52.

This paper consists of 5 printed pages.

SECTION A

- 1. Using the Brønsted – Lowry theory, define
 - (i) an acid
 - (ii) a base.

(2 marks)

- Predict and explain whether the following salts will be acidic, basic or neutral:
 - CuSO₄
 - (ii) NaCN
 - (iii) NH₄Cl
 - (iv) NaNO₃.

(8 marks)

Calculate the equilibrium constant of the reaction between cobalt and nickel from the following redox potentials at 25 °C:

 $Ni_{(aq)}^{2+}/Ni_{(s)}$ $Co_{(aq)}^{2+}/Co_{(s)}$

 $E^{\theta} = -0.250 \text{ V}$

 $\frac{1}{(aq)}/Co_{(s)}$

 $E^{\theta} = -0.277 \text{ V}.$

(10 marks)

2. What is a half life of a reaction? (a)

(2 marks)

Consider the following reaction: (b)

 $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$.

If the rate constant, K at 317 °C and 427 °C is 1.4 x 10⁻³ dm³mol⁻¹s⁻¹ and

6.4 x 10⁻² dm³mol⁻¹s⁻¹ respectively, what is the activation energy E_a for the reaction?

(6 marks)

The reaction between compounds Y and Z is represented as

 $Z_{(g)} + 3Y_{(g)} \rightarrow ZY_{3(g)}$

The reaction produced the following experimental results shown in the following table:

Experi ment	Initial concentration of Z (moldm ⁻³)	Initial concentration of Y(moldm ⁻³)	Initial rate of formation of ZY ₃ (moldm ⁻³ min ⁻¹)
1	0.100	0.100	0.00200
2	0.100	0.200	0.00798
3	0.100	0.300	0.01805
4	0.200	0.100	0.00399
5	0.300	0.100	0.00601

Using the results in the table calculate the order of reaction with respect to

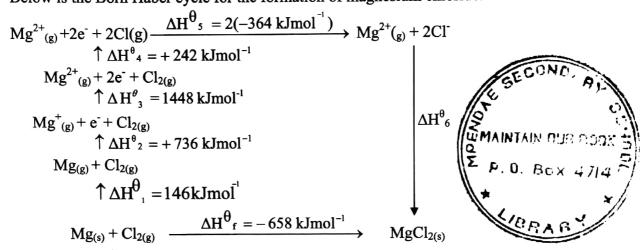
- (i) Y
- (ii)
- (iii) overall reaction.

(8 marks)

- Find the rate constant for the reaction in (c) above.
 - (ii) Find the units for the rate constant.

(4 marks)

- The dissociation constants, K_b for NaF and NH₃ in water are 1.56 x 10⁻¹¹ and 1.77 x 10⁻¹⁵ 3. respectively. Find the pH of
 - 0.01 M solution of NaF (i)
 - (ii) 0.10 M solution of NH₃.


(15 marks)

2011/000

- (b) The solubility product, K_{sp} for CaF₂ is 4.0 x 10⁻¹¹. Calculate the solubility of CaF₂ in 0.025M NaF solution. (5 marks)
- 4. (a) Define the following:
 - (i) Hess' law
 - (ii) Standard enthalpy of formation
 - (iii) Standard enthalpy of neutralization.

(3 marks)

(b) Below is the Born Haber cycle for the formation of magnesium chloride.

- (i) Name the enthalpy changes corresponding to the following symbols: ΔH^{θ}_{1} , ΔH^{θ}_{2} , ΔH^{θ}_{3} , ΔH^{θ}_{4} , ΔH^{θ}_{5} and ΔH^{θ}_{6}
- (ii) Calculate the value of ΔH^{θ}_{6}

(14 marks)

(c) The standard enthalpy changes of formation of MgCl and MgCl₃ are -110 kJmol⁻¹ and +4000 kJmol⁻¹ respectively. How do you compare the energetic stabilities of MgCl_(s), MgCl_{2(s)} and MgCl_{3(s)} with respect to their constituent elements? (3 marks)

SECTION B

- 5. (a) Study the following cathode processes:
 - (i) $Ag_{2(aq)}^{+} + e^{-} \rightarrow Ag_{(s)}$
 - (ii) $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$

What interpretations can you make from the two processes?

(3 marks)

- (b) Whereas metals are deposited at the cathode electrode, non metals are liberated at the anode electrode. Explain this electrolylitic phenomenon. (3 marks)
- (c) Explain why H⁺ ions cannot exist in solution.

(4 marks)

(d) A metal of relative atomic mass 27 is deposited by electrolytic decomposition of its solution. If 0.176 g of the metal is deposited on the cathode when a current of 0.15 amperes flow for 3½ hours, what is the charge on the cation of this metal? (10 marks)

2011/00

3

6. (a) Describe the four main features of a coordination compound.

(4 marks)

- (b) (i) Differentiate between coordination number and coordination geometry.
 - (ii) Use sketch diagrams to differentiate the orientation of the 3d atomic orbitals in space.

 (7 marks)
- (c) Draw the geometrical structures of the following complexes:
 - (i) $Ni(CN)_5^{3}$

(ii) CuCl₂

(3 marks)

- (d) Show that
 - (i) hexaaquatitanium (III) ion is a paramagnetic complex

(3 marks)

(ii) hexaaminecobalt (III) ion is a diamagnetic complex.

(3 marks)

- 7. (a) Define the following terms:
 - (i) Buffer solution
 - (ii) Standard solution
 - (iii) Molarity.

(3 marks)

(b) A standard solution is made by dissolving 1.185 g of potassium dichromate (VI) and making it up to 250 cm³ solution. This solution is used to find the concentration of sodium thiosulphate solution. A 25 cm³ of the oxidant was acidified and added to an excess of potassium iodide to liberate iodine according to the equation;

 $Cr_2O_7^{2-} + 6I^- + 14H^+ \rightarrow 3I_2 + 2Cr^{3+} + 7H_2O.$

When the solution was titrated against sodium thiosulphate, 20 cm³ were required. Find the concentration of sodium thiosulphate. (8 marks)

(c) A chemist desired to prepare one litre of a solution buffered at pH 9.0. How many grams of ammonium chloride have to be added to one litre of 0.20 M NH₃ to make such a buffer? (given the pK_b value of ammonia is 4.74 in the equation). (9 marks)

SECTION C

- 8. (a) Name the following compounds according to IUPAC system;
 - (i) CH₃-C-CH₂.Br

(ii) \(\)=(

(iv) O₂N - ○ - C-CH₃

(10 marks)

- (b) Write the products for the following reactions:
 - (i) $CH_3CH_2CH_2CH_2Br + NaOH_{(aq)}$
 - (ii) $C_6H_5CH_2Cl + H_2O$
 - (iii) CH₃CH₂CH₂Br +NaSH
 - (iv) $CH_3CH_2Br + Na^+C^- \equiv C-CH_3$
 - (v) CH₃CH₂CH₂Br + Na⁺O⁻CH₂CH₃.

(10 marks)

2011/00

- 9. (a) An unknown compound C (C₈H₁₀O) is insoluble in water. Compound C reacts with excess HI to give acidic compound D (C₆H₆O) and ethyl iodide. Give the structural formulae of compounds C and D and the equation of the reaction. (4 marks)
 - (b) Show the mechanism of each of the following reactions:
 - (i) Friedel Craft acylation to form acetophenone.
 - (ii) Formation of nitronium ion when concentrated nitric acid and concentrated sulphuric acid react together.
 - (iii) Reaction between methylmagnesium bromide and carbondioxide to form ethanoic
 - (iv) Stabilization of phenoxide ion by mesomerism.

(16 marks)

- 10. (a) Write the structural formula for each of the following compounds:
 - (i) 2,4-dichloro-1-hexanol
 - (ii) 1,2-dimethoxyethane
 - (iii) 2-chlorobutanal
 - (iv) Cyclobutanone.

(4 marks)

(b) Indicate the monomers and the polymerization method which are likely used in making each of the following commercial polymers.

- (ii) $-CF_2-CF_2-CF_2-CF_2-CF_2-CF_2$
- (iii) NH(CH₂)₅CONH(CH₂)₅CONH(CH₂)₅CO -

(6 marks)

(c) Describe the reaction which takes place during vulcanization of raw rubber. What changes in physical properties accompany this process? What would happen if the proportion of s ulphur used in vulcanization is very large? (10 marks)

5