THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A

CHEMISTRY 3A ALTERNATIVE A PRACTICAL

(For Both School and Private Candidates)

Time: 3 Hours

Wednesday, 09th February 2011 a.m.

INSTRUCTIONS

- 1. This paper consists of three (3) questions.
- 2. Answer all questions.
- 3. Question number one (1) carries 20 marks and the other two, 15 marks each.
- 4. Non-programmable calculators may be used.
- 5. Cellular phones are **not** allowed in the examination room.
- 6. Write your **Examination Number** on every page of your answer booklet(s).
- 7. You may use the following constants:

Atomic masses:
$$H = 1$$
, $C = 12$, $O = 16$, $Na = 23$, $S = 32$, $K = 39$, $Mn = 55$, $Cu = 63.5$.

This paper consists of 4 printed pages.

1. You are provided with the following solutions:

KO: Solution containing 3.35 g of pure sodium oxalate in 0.50 dm³ of solution.

DM: Solution containing 3.20 g of impure potassium permanganate in 1 dm³ of solution.

GS: 3M sulphuric acid.

Theory:

An acidified oxalate solution warmed at 70°C - 80°C is titrated against permanganate solution. From the titration results, the purity of the potassium permanganate can be calculated.

In acid solution, oxalate ions react quantitatively with permanganate ions as represented by the equation.

$$5C_2O_4^{-2} + 2MnO_4 + 16H^+ \rightarrow 2Mn^{-2} + 10CO_2 + 8H_2O$$

Procedure:

- (i) Pipette 25 cm³ or 20 cm³ of solution KO into a 250 cm³ titration flask.
- (ii) Add 60 cm³ of solution GS.
- (iii) Heat the mixture to about 80°C.
- (iv) Titrate the hot solution with the permanganate solution DM until complete colour change is observed.

(v) Repeat your titration procedure (i) to (iv) three times and your titration results in a tabular form as in the following table:

Results:
Results:

The volume of the pipette used was _____cm³.

Burette readings:

Titration numbers	Pilot	1	* 2	2 /
Final readings (cm ³)	,		12/2	3://
Initial readings (cm ³)				ستنت
Titre (volume used) cm ³				

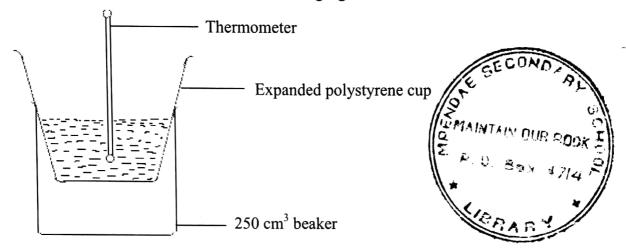
Summary:

____ cm³ of solution KO require ____ cm³ of solution DM for completion of the

Questions:

- (a) Calculate the concentration of KO in moles per litre (dm³).
- (b) Calculate the concentration of solution DM in
 - (i) moles per litre
 - (ii) grams per dm³.
- (c) Calculate the percentage purity of potassium permanganate.
- (d) Give the half reaction equations for the above reaction and indicate which of the species are oxidized or reduced.

 (20 marks)


2. You are provided with the following:

PQ: 1.6 g of anhydrous copper sulphate.

MQ: 2.5 g of hydrated copper sulphate (CuSO₄.5H₂O).

Procedure:

(a) Set up the apparatus as shown in the following figure.

- (b) Pour 50 cm³ of distilled water into the polystyrene cup and measure its temperature.
- (c) Tip the solid PQ of about 1.6 g provided on a watch glass into the water and stir gently with a thermometer until dissolution is complete.
- (d) Note the maximum temperature reached T.
- (e) Repeat the above experiment using about 2.5 g of MQ provided on a watch glass in place of PQ.

Results:

Sample	Temperature T ^o C
PQ	
MQ	

N.B: Assume that the densities and specific heat capacities of the solutions are the same as those of water and that the salts and water were both at the same temperature at the beginning of the experiment. Specific heat capacity of water is 4.2 Jg⁻¹ K⁻¹.

Questions:

- (a) Calculate the enthalpy of solution of the two forms of the salt PQ and MQ.
- (b) Explain the difference in the values of enthalpy of solution obtained for the two forms of the salt. (15 marks)

3.	You are	provided	with	the	following
----	---------	----------	------	-----	-----------

 W_1 : 0.1M sodium hydroxide.

W₂: Solution of succinic acid.

W₃: Phenolphthlaien indicator.

W₄: Diethyl ether.

At constant temperature succinic acid dissolves in both water and diethyl ether while maintaining a constant ratio of concentration in solvents under consideration.

Procedure 1

- Pipette 25 cm³ or 20 cm³ of W₂ into a clean conical flask. Add to it 2-3 drops of
- (ii) Put W₁ into the burette.
- (iii) Titrate very carefully solution W2 against W1 till there is a colour change. Record the volume of W₁ used.

/ \	
(a)	Results

- The volume of p pette used was $_$ cm³. Volume of W₁ used was $_$ cm³. (i)
- (ii)

Procedure 2

- Measure 100 cm3 of W4 using a measuring cylinder and place it into a separating (i)
- Add 100 cm³ of W₂ by means of measuring cylinder into the funnel in (i) above, shake well and allow the system to stand for a few minutes.
- (iii) Run off the aqueous layer into a clean beaker. Using measuring cylinder put 25 cm3 of the aqueous layer into a clean conical flask. Titrate very careful this aliquot against W1 using W3 as an indicator. Record the volume of W1 used.

(b) Results

- (i) Volume of aqueous layer taken was ____ cm³.
 (ii) Volume of W₁ used was ____ cm³.
- Write a balanced chemical equation representing the reaction taking place in (c) procedures (1) and (2) above.
- (d) Calculate the following:
 - initial concentration of W2 in water before mixing.
 - final concentration of W2 in the aqueous layer. (ii)
- Deduce the concentration of W₂ in the organic layer.
- Calculate the partition coefficient of W2 between water and diethyl ether W4, i.e (f) $Kd = \frac{Concentration of W_2 in aqueous layer}{Concentration of W_2 in ether layer}$ (15 marks)