THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A

CHEMISTRY 3A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 3:20 Hours

Wednesday, 6th May 2015 a.m.

Instructions

- 1. This paper consists of three (3) questions. Answer all the questions.
- 2. Question number one (1) carries 20 marks and the other two (2), 15 marks each.
- 3. Mathematical tables and non programmable calculators may be used.
- 4. Cellular phones are **not** allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).
- 6. You may use the following constants:

Atomic masses: H = 1, C = 12, O = 16, S = 32, Na = 23, K = 39, Cr = 52, Mn = 55, Fe = 56, I = 127.

• Molar gas constant = $8.314 \text{ J} \cdot \text{K}^{-1} \text{mol}^{-1}$.

- 1. You are provided with the following:
 - S: A solution made by diluting 10.00 cm³ of 0.50 M standardo dichromate solution to exactly 250 cm³ of water;
 - Q: Sodium thiosulphate solution;
 - A: Dilute sulphuric acid solution;
 - **B**: Starch solution;
 - C: A 10% potassium iodide solution.

Theory

Potassium dichromate reacts quantitatively with acidified potassium jodice and an equivalent amount of iodine is liberated.

The reaction can be represented by the following equations:

$$Cr_2O_7^{2-} + 6I^- + 14H^+ \longrightarrow 2Cr^{3+} + 3I_2 + 7H_2O....(i).$$

The liberated iodine is titrated with thiosulphate in which the reaction taking place is represented as follows: $2S_2O_3^{2-}+I_2\longrightarrow S_4O_6^{2-}+2I^-....(ii)$.

Procedure

- (i) Pipette 25 cm³ of solution S into a conical flask. Add 25 cm³ of solution C, then 20 cm³ of solution A.
- (ii) Titrate the liberated iodine with solution **Q** until the solution is pale yellow green in colour.
- (iii) Add 2 cm³ of solution **B** and continue titrating until the blue colour just disappears and a pale green colour remains. Record the volume used.
- (iv) Repeat procedure (i) to (iii) three times and record your results in a tabular form.

Questions

- (a) Calculate the concentration of S in moles per dm^3 .
- (b) Write down the half reaction equations to show the oxidation and reduction processes for the reactions in procedures (i) and (ii).
- (c) Calculate the:
 - (i) Molarity of Q.
 - (ii) Concentration in g/dm³ of **Q**.
- (d) The orange colouration during the experiment indicates the presence of ______ in solution and the pale green colouration at the end of the experiment indicates the presence of _____ in solution.
- 2. You are provided with the following:
 - P₁: A solution containing 20 g of Na₂S₂O₃.5H₂O in 0.5 dm³ of solution;
 - P₂: A solution of dilute hydrochloric acid;
 - P₃: Distilled water;

Stop watch.

Procedure

- (i) Draw a clear letter "W" on a piece of white paper provided and place a 100 cm³ beaker on top of the letter "W" in such a way that the letter is visible when viewed from the top.
- (ii) Measure $10 \text{ cm}^3 \text{ of } \mathbf{P_1}$ into a beaker in (i) followed by $2 \text{ cm}^3 \text{ of } \mathbf{P_3}$.

Page 2 of 4

- (iii) Add 5 cm³ of P₂ into the solution in (ii) and immediately start the stop watch, Swirl the mixture and record the time taken for the letter "W" to disappear completely.
- (iv) Repeat procedures (i) to (iii) using the specifications given in Table 1.

Table 1: Volume of the mixture

S/n	Volume of P ₁	Volume of P2	Volume of P ₃
1	10	5	0
2	8	5	2
3	6	5	4
4	4	5	6

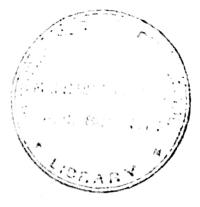

(v) Record your results as indicated in Table 2.

Table 2

S/n	T (Sec)	$\frac{1}{t}(\mathbf{Sec}^{-1})$	[P ₁]/M
1			
2			
3			
4			

Questions

- (a) Plot a graph of $[P_1]$ against time, t.
- (b) Plot a graph of $\frac{1}{t}$ against $[P_1]$.
- (c) From the graphs in (a) and (b):
 - (i) What is the effect of concentration of P_1 on the rate of the reaction?
 - (ii) What is the order of reaction with respect to P_1 ? Give a reason for your answer.

Page 3 of 4

3. Substance T contains two cations and a common anion. Use the information given in the experiment column in Table 3 to complete the observations and inferences and hence identify the two cations and the common anion.

Table 3

S/n	Experiment	Observations	Inference	
(a)	Appearance.			
(b)	Heat a little of sample T in a dry test tube.			
(c)	Dissolve a little of sample T in water and divide			
	the resulting solution into four portions.			
	(i) To one portion add NaOH solution and			
	warm gently.		4	
	(ii) To the second portion add AgNO ₃ solution		7	
	till excess.			
	(iii) To the third portion add few drops of			
	potassium hexacyanoferrate (III).			
τ.	(iv) To the fourth portion add ethanoic acid			
	followed by lead ethanoate solution.		-4	
(d)	To a little sample T in a dry test tube, add dilute			
	sodium hydroxide solution.			

	on	_1	ı	_•	_	
•	on	C.	ш	S١	a	п

(i)	The cations in sample T are	and

(ii) Write the molecular formula of sample T.

(iii) Write the reaction equation in experiment (d).

