THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2008

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

F₁: An acidified solution of hydrogen peroxide obtained by reacting 8.45 g of a metal peroxide MO₂ with dilute H₂SO₄ and making the final solution up to 1 dm³

F₂: A solution of potassium permanganate (KMnO₄) prepared by dissolving 3.16 g of the salt in 1 dm³ of distilled water

Theory

The metal peroxide reacts with dilute sulphuric acid to form hydrogen peroxide:

$$MO_2 + H_2SO_4 ----> MSO_4 + H_2O_2$$

Hydrogen peroxide reacts with KMnO₄ in acidic conditions according to the reaction:

$$2MnO_4^- + 5H_2O_2 + 6H^+ ----> 2Mn^{2+} + 5O_2 + 8H_2O$$

Procedure

- (i) Pipette 25.0 cm³ of F1 into a clean titration flask
- (ii) Add dilute sulphuric acid to acidify
- (iii) Titrate with F₂ until a faint pink colour persists
- (iv) Repeat for concordant titres

Summary

25.0 cm³ of solution F₁ required 22.50 cm³ of solution F₂ for complete reaction

Questions

(a) Write the overall ionic equation for the redox reaction

$$2MnO_4^- + 5H_2O_2 + 6H^+ - - > 2Mn^{2+} + 5O_2 + 8H_2O$$

(b) Calculate the concentration of hydrogen peroxide in mol/dm³

Given directly:

Concentration of $H_2O_2 = 0.1536 \text{ mol/dm}^3$

(c) Calculate the atomic mass of metal M in MO₂

From the equation:

1 mol of MO₂ produces 1 mol of H₂O₂

So, moles of MO_2 in 1 $dm^3 = 0.1536$ mol

Mass of $MO_2 = 8.45 g$

Molar mass of $MO_2 = 8.45 \div 0.1536 = 55.03$ g/mol

$$MO_2 = M + 2 \times 16 = M + 32$$

Therefore, M = 55.03 - 32 = 23.03

(d) Identity of metal M

The atomic mass of M is approximately 23. The metal M is sodium.

2. You are provided with the following:

AB: 2.0 M NaOH solution

CD: 2.0 M HCl solution

EF: 2.0 M CH₃COOH solution

Thermometer, Plastic beaker (calorimeter), Measuring cylinder

Theory

The enthalpy change for a neutralization reaction can be measured by mixing known volumes of acid and base and recording the temperature change. The enthalpy change is calculated by:

$$q = -\rho \times V \times c \times \Delta t$$

where:

 ρ = density of solution = 1 g/cm³

 $V = total \ volume \ of \ solution \ in \ cm^3$

 $c = specific heat capacity = 4.2 Jg^{-1}K^{-1}$

 $\Delta t = \text{temperature change in } ^{\circ}\text{C}$

Assume the following temperature readings:

Experiment	Initial	Final	Temperature	Total Volume
	Temperature (°C)	Temperature (°C)	Change (°C)	(cm³)
1	25.0	32.4	7.4	200
2	25.0	31.0	6.0	200

- (a) Calculate the heat change
- (i) First experiment (NaOH + HCl)

$$q = -\rho \times V \times c \times \Delta t$$

$$= -1 \times 200 \times 4.2 \times 7.4$$

$$= -6216 J = -6.216 kJ$$

(ii) Second experiment (NaOH + CH₃COOH)

$$q = -1 \times 200 \times 4.2 \times 6.0$$

$$= -5040 J = -5.040 kJ$$

(b) Calculate the molar enthalpy of neutralization

Volume of NaOH used = $100 \text{ cm}^3 = 0.1 \text{ dm}^3$

 $Molarity = 2.0 \text{ mol/dm}^3$

Moles of NaOH = $2.0 \times 0.1 = 0.2$ mol

(i) NaOH + HCl

Molar enthalpy = heat change \div moles

 $= -6.216 \div 0.2 = -31.08 \text{ kJ/mol}$

(ii) NaOH + CH₃COOH

Molar enthalpy = $-5.040 \div 0.2 = -25.20 \text{ kJ/mol}$

(c) Comparison

The molar enthalpy of neutralization in the first experiment (NaOH + HCl) is more exothermic than in the second experiment (NaOH + CH₃COOH).

This is because HCl is a strong acid and ionizes completely, while CH₃COOH is a weak acid and partially ionizes, absorbing part of the heat during ionization. Hence, less heat is released in the second reaction.

3. You are provided with the following:

L₁: 0.10 M sodium hydroxide

L₂: Solution containing an unknown concentration of succinic acid

L₃: Ethoxyethane

Also provided: Distilled water, Phenolphthalein indicator (POP)

Theory

Succinic acid dissolves in both water and ethoxyethane and distributes at constant temperature in a fixed ratio between the two solvents.

Procedure 1

(i) Pipette 25.0 cm³ of L₂ into a conical flask and add 2-3 drops of POP

5

Find this and other free resources at: http://maktaba.tetea.org

(ii) Fill the burette with L ₁		
(iii) Titrate L_2 against L_1 until colour changes		
Suppose:		
Volume of L_1 used = 20.5 cm ³		
Volume of pipette used = 25.0 cm^3		
(a) Results		
(i) Volume of pipette used = 25.0 cm ³		

- (ii) Volume of L_1 used = 20.5 cm³
- (iii) Room temperature = 25 °C
- (b) Procedure 2
- (i) Measure 75.0 cm³ of L₃ and mix with 75.0 cm³ of distilled water in separating funnel
- (ii) Add 7.5 cm³ of L₂, shake and allow to stand
- (iii) Separate layers, pipette 25.0 cm³ of aqueous layer
- (iv) Titrate this aliquot against L₁

Suppose:

Volume of L_1 used = 7.0 cm^3

- (b) Results
- (i) Volume of aqueous layer taken = 25.0 cm^3
- (ii) Volume of L_1 used = 7.0 cm³
- (c) Balanced chemical equation:

$$HOOC-CH_2CH_2-COOH+2NaOH----->NaOOC-CH_2CH_2-COONa+2H_2O$$

- (d) Calculate:
- (i) Initial concentration of L2 in water

Volume of $L_1 = 20.5 \text{ cm}^3 = 0.0205 \text{ dm}^3$

Concentration = 0.10 M

Moles of NaOH = $0.10 \times 0.0205 = 0.00205$ mol

Succinic acid is dibasic, so:

Moles of acid = $0.00205 \div 2 = 0.001025$ mol

Volume of acid = $25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$

Concentration = $0.001025 \div 0.025 = 0.0410 \text{ mol/dm}^3$

(ii) Final concentration of L2 in aqueous layer

Volume of $L_1 = 7.0 \text{ cm}^3 = 0.0070 \text{ dm}^3$

Moles of NaOH = $0.10 \times 0.0070 = 0.0007$ mol

Moles of acid = $0.0007 \div 2 = 0.00035$ mol

Volume = $25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$

Concentration = $0.00035 \div 0.025 = 0.0140 \text{ mol/dm}^3$

(e) Concentration in organic layer

Initial moles = 0.001025

Final in aqueous = 0.00035

In organic = 0.001025 - 0.00035 = 0.000675 mol

Total volume of ethoxyethane = $75.0 \text{ cm}^3 = 0.075 \text{ dm}^3$

Concentration = $0.000675 \div 0.075 = 0.0090 \text{ mol/dm}^3$

(f) Partition coefficient = conc. in water \div conc. in ether

 $= 0.0140 \div 0.0090 = 1.56$

7

Find this and other free resources at: http://maktaba.tetea.org