THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours Year: 2015

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- S: A solution made by diluting 10.00 cm³ of 0.50 M K₂Cr₂O₇ to exactly 0.25 dm³ with distilled water
- Q: Sodium thiosulphate solution
- A: Dilute sulphuric acid solution
- B: Starch solution
- C: A 10% potassium iodide solution

Procedure:

- (i) Measure 25.0 cm³ of solution S into a conical flask
- (ii) Add 10 cm³ of solution C, 10 cm³ of solution A, and 1 cm³ of solution B to the flask
- (iii) Titrate the mixture against solution Q until the blue colour disappears
- (iv) Repeat to obtain three concordant titre values

Questions:

(a) Write the half reaction equations to show the oxidation and reduction processes for equations 1 and 2

Equation 1:

Reduction:
$$Cr_2O_7^{2-} + 14H^+ + 6e^- ----> 2Cr^{3+} + 7H_2O$$

Oxidation:
$$2I^{-} ----> I_2 + 2e^{-}$$

Equation 2:

Oxidation:
$$S_2O_3^{2-} ----> S_4O_6^{2-} + 2e^-$$

Reduction:
$$I_2 + 2e^- ----> 2I^-$$

(b) For each reaction, identify the oxidant and the reductant. Give a reason for your answer.

In equation 1:

Oxidant: Cr₂O₇²⁻ (accepts electrons and is reduced to Cr³⁺)

Reductant: I⁻ (loses electrons and is oxidized to I₂)

In equation 2:

Oxidant: I_2 (accepts electrons and is reduced to I^-)

Reductant: S₂O₃²⁻ (loses electrons and is oxidized to S₄O₆²⁻)

(c) (i) Molarity of Q:

Given 20 g of Na₂S₂O₃·5H₂O in 0.5 dm³

Molar mass =
$$158 + (5 \times 18) = 248$$
 g/mol

Moles =
$$20 \div 248 = 0.08065$$
 mol

 $Molarity = 0.08065 \div 0.5 = 0.1613 \ mol/dm^3$

(ii) Concentration in g/dm³:

$$20 \text{ g} \div 0.5 \text{ dm}^3 = 40 \text{ g/dm}^3$$

(d) What is the significance of the orange and pale green colourations in this experiment?

The orange colour at the start indicates the presence of Cr₂O₇²⁻ ions.

The pale green colour at the end indicates the formation of Cr³⁺ ions, confirming that reduction of Cr₂O₇²⁻ has occurred.

2. You are provided with the following:

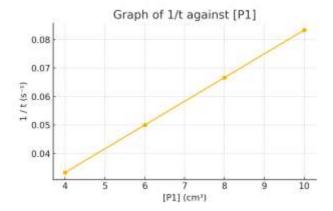
P₁: A solution containing 20 g of Na₂S₂O₃·5H₂O in 0.5 dm³ of solution

P₂: A solution of dilute hydrochloric acid

P₃: Distilled water

Stop watch

Procedure:


- (i) Pour 10 cm3 of solution P2 into a conical flask
- (ii) Place the flask on a white paper marked "W"
- (iii) Add 10 cm³ of solution P₁ into the flask and start the stopwatch immediately
- (iv) Observe and record the time taken for the letter "W" to disappear
- (v) Repeat the experiment using 8, 6, 4 cm³ of solution P_1 and add distilled water (P_3) to maintain a total volume of 10 cm^3 each time

Questions:

(a) Plot a graph of [P₁] against time

(b) Plot a graph of 1/t against [P₁]

(c) What is the effect of concentration of P₁ on the rate of the reaction?

As the concentration of P_1 increases, the time taken for the cross (W) to disappear decreases. This means the rate of reaction increases with concentration of P_1 . Therefore, the reaction is faster at higher concentrations of sodium thiosulphate.

(d) What is the order of reaction with respect to P₁? Give a reason for your answer.

The order of reaction with respect to P_1 is first order. This is because the graph of 1/t versus $[P_1]$ gives a straight line through the origin, indicating that the rate is directly proportional to the concentration of sodium thiosulphate.

3. Substance T contains two cations and a common anion. Use the information given in the experiment column in Table 3 to complete the observations and inferences and hence identify the two cations and the common anion.

Table 3:

(a) Appearance.

Observation: White crystalline solid

Inference: Presence of a typical salt

(b) Heat a little of sample T in a dry test tube.

Observation: Brown gas evolved with possible charring

Inference: Presence of nitrate ion (NO ₃ ⁻)
(c) Dissolve a little of sample T in water and divide the resulting solution into four portions:
(i) To one portion add NaOH solution and warm gently.
Observation: Reddish-brown precipitate formed
Inference: Presence of Fe ³⁺ ion
(ii) To the second portion add AgNO ₃ solution till excess.
Observation: White precipitate formed
Inference: Presence of Cl ⁻ ion
(iii) To the third portion add few drops of potassium hexacyanoferrate (III).
Observation: Deep blue precipitate formed
Inference: Presence of Fe ³⁺ ion
(iv) To the fourth portion add ethanoic acid followed by lead ethanoate solution.
Observation: White precipitate formed
Inference: Presence of Cl ⁻ or SO ₄ ²⁻ ion
(d) To a little sample T in a dry test tube, add dilute sodium hydroxide solution.
Observation: Gas with ammoniacal smell evolved
Inference: Presence of NH ₄ ⁺ ion
Conclusion:
(i) The cations in sample T are Fe ³⁺ and NH ₄ ⁺

6

- (ii) The molecular formula of sample T is $NH_4Fe(SO_4)_2$ or NH_4FeCl_4 (depending on confirmed common anion)
- (iii) Reaction equation in experiment (d):

$$NH_4^+(aq) + OH^-(aq) ----> NH_3(g) + H_2O(l)$$