THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2018

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. You are provided with the following solutions:
- E: 0.02 M potassium permanganate
- F: 3.15 g hydrated oxalic acid in 500 cm³ solution
- G: 1 M sulphuric acid

Summary:

Volume of pipette used = 25 cm^3

25 cm³ of F required 23.60 cm³ of E for complete reaction

Questions

(a) Write a half reaction equation for the reduction of MnO₄⁻ ions to Mn²⁺ in acidic solution

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

(b) Write a half reaction equation for the oxidation of C₂O₄²⁻ to CO₂

$$C_2O_4{}^{2-} \rightarrow 2CO_2 + 2e^-$$

(c) Write an overall ionic equation

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

(d) Deduce the value of water of crystallization in hydrated oxalic acid

Molar mass of
$$C_2H_2O_4 \cdot xH_2O = 90 + 18x$$

Moles of F = mol of
$$MnO_4^- \times 5/2$$

$$= (0.02 \times 23.60 \div 1000) \times 5/2 = 0.00118 \text{ mol}$$

Mass = 3.15 g in 500 cm³
$$\rightarrow$$
 in 25 cm³ = 3.15 \times 25 \div 500 = 0.1575 g

Molar mass =
$$0.1575 \div 0.00118 = 133.47$$

$$133.47 = 90 + 18x \rightarrow x = (133.47 - 90) \div 18 = 2.4 \approx 2$$

2

Find this and other free resources at: http://maktaba.tetea.org

Therefore x = 2

- (e) Molecular formula of hydrated oxalic acid = $C_2H_2O_4 \cdot 2H_2O$
- 2. You are provided with:
- I: 0.4 g magnesium
- J: 0.6 g magnesium carbonate
- K: 60 cm³ of 1 M HCl

Case I:
$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

$$T_1 = 25.0$$
°C, $T_2 = 36.5$ °C $\rightarrow \Delta T = 11.5$ °C

$$Q = mc\Delta T = 60 \times 4.2 \times 11.5 = 2898 J = 2.898 kJ$$

Case II:
$$MgCO_3 + 2HCl \rightarrow MgCl_2 + CO_2 + H_2O$$

$$T_3 = 25.0$$
°C, $T_4 = 32.0$ °C $\rightarrow \Delta T = 7.0$ °C

$$Q = 60 \times 4.2 \times 7.0 = 1764 J = 1.764 kJ$$

(b) Calculate enthalpy of formation of MgCO₃

$$Mg + CO_2 + H_2O \rightarrow MgCO_3$$

$$\Delta$$
Hreaction = -1.764 kJ

$$\Delta$$
H formation of CO₂ = -394 kJ/mol

$$\Delta$$
H formation of H₂O = -286 kJ/mol

$$\Delta$$
Hformation of MgCO₃ = Δ HCO₂ + Δ HH₂O - Δ Hreaction

$$= -394 + (-286) - (-1.764) = -680 + 1.764 = -678.24 \text{ kJ/mol}$$

Enthalpy of formation of $MgCO_3 = -678.24 \text{ kJ/mol}$

3. You are provided with sample N containing one cation and one anion. Carry out the experiments described in Table 3. Record carefully your observations, make appropriate inferences and finally identify the anion and cation present in sample N.

Table 3: Table of results

S/n Experiment	Observations		Inference
		-	
(a) Observe the appearance of	of sample N	White crystalline solid	Ionic salt likely present
\mid (b) \mid Heat a little sample N in a dry test tube \mid Brown gas evolved (NO2), pungent smell \mid Presence of nitrate ion (NO3 $^{-})$ \mid			
$ \ (c)(i)\ \ Add\ NaOH\ and\ warm\ \ Ammonia\ gas\ evolved,\ confirmed\ by\ smell\ \ Presence\ of\ NH_4^+\ ion\ \ $			
$ \ (c)(ii)\ \ Add\ freshly\ prepared\ FeSO_4\ followed\ by\ conc.\ H_2SO_4\ \ No\ brown\ ring\ observed$ $ \ Absence\ of\ NO_2^+\ or\ other\ oxidizing\ species\ $			
$ \ (c)(iii)\ \ Add\ lead\ ethanoate\ and\ boil \ No\ visible\ precipitate \ No\ sulphate,\ chloride\ or\ halides\ present\ \ No\ sulphate\ present\ present\ \ No\ sulphate\ present\ p$			
$ \ (e)\ \ Perform\ confirmatory\ tests\ for\ cation\ and\ anion \\ NO_3^-\ confirmed\ by\ ring\ test\ \ Confirms\ NH_4^+\ and\ NO_3^-\ $			

Conclusion:

- (i) The cation in sample N is NH₄⁺
- (ii) The anion in sample N is NO₃⁻
- (iii) The molecular formula for sample N is NH₄NO₃
- (iv) Balanced chemical equation for experiment (b):

$$NH_4NO_3(s) \rightarrow NO_2(g) + H_2O(g) + N_2(g)$$
 (on heating)