THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2019

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following solutions:

UU: 0.5 M KMnO₄ solution diluted from 20 cm³ to 500 cm³

VV: H₂O₂ solution made by diluting 13.9 cm³ of commercial hydrogen peroxide to 500 cm³

ZZ: 2.0 M H₂SO₄

Summary:

Volume of pipette = 25 cm^3

25 cm³ of acidified VV required 22.40 cm³ of UU for complete oxidation

Questions

(a) Write half reaction equations

- (b) Calculate the molarity of solution:
- (i) UU

Original: 20 cm³ of $0.5 \text{ M} \rightarrow \text{diluted to } 500 \text{ cm}^3$

Moles =
$$0.5 \times 20 \div 1000 = 0.01 \text{ mol}$$

Molarity =
$$0.01 \div 0.5 = 0.02 \text{ mol/dm}^3$$

(ii) VV

From the redox equation:

$$2MnO_4^- + 5H_2O_2 + 6H^+ - - > 2Mn^{2+} + 5O_2 + 8H_2O_3$$

So: 2 mol MnO₄⁻ reacts with 5 mol H₂O₂

Moles of KMnO₄ =
$$0.02 \times 22.40 \div 1000 = 0.000448$$
 mol

Moles of
$$H_2O_2 = 5/2 \times 0.000448 = 0.00112$$
 mol

Volume of $VV = 25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Molarity of $VV = 0.00112 \div 0.025 = 0.0448 \text{ mol/dm}^3$

(c) Volume strength of commercial H₂O₂

From decomposition:

$$2H_2O_2 ----> 2H_2O + O_2$$

2 mol (68 g) H_2O_2 gives 22.4 dm³ O_2

Moles in $1 \text{ dm}^3 = 0.0448 \text{ mol}$

 O_2 evolved = $(22.4 \times 0.0448 \times 2) = 2.007 \text{ dm}^3$

Volume strength = 2.007

2. You are provided with:

B₁: 1 M HCl

B₂: 0.2 g magnesium

B₃: 1 g magnesium carbonate

Case A: $Mg + 2HCl ----> MgCl_2 + H_2$

Case B: $MgCO_3 + 2HCl \longrightarrow MgCl_2 + H_2O + CO_2$

Given:

$$c = 4.2 \text{ Jg}^{-1}\text{K}^{-1}, \, \rho = 1 \text{ g/cm}^3, \, V = 50 \text{ cm}^3 \rightarrow \text{mass} = 50 \text{ g}$$

(a) Heat evolved = $mc\Delta T$

Case A:

$$T_1 = 25.0$$
°C, $T_2 = 35.5$ °C $\rightarrow \Delta T = 10.5$ °C

$Q=50\times4.2\times$	10.5 = 2205 J = 2.2	.05	kJ

Case B:

$$T_3 = 25.0$$
°C, $T_4 = 32.0$ °C $\rightarrow \Delta T = 7.0$ °C

$$Q = 50 \times 4.2 \times 7.0 = 1470 \text{ J} = 1.470 \text{ kJ}$$

(b) Calculate enthalpy of formation of MgCO₃

Given:

$$\Delta H_1 (CO_2) = -394 \text{ kJ/mol}$$

$$\Delta H_2 (H_2O) = -286 \text{ kJ/mol}$$

 ΔH (reaction from part b) = -1.470 kJ

Using Hess's Law:

$$\Delta Hf(MgCO_3) = \Delta H(CO_2) + \Delta H(H_2O) - \Delta H(reaction)$$

$$= -394 + (-286) - (-1.470)$$

$$= -680 + 1.470$$

$$= -678.53 \text{ kJ/mol}$$

Enthalpy of formation of $MgCO_3 = -678.53 \text{ kJ/mol}$

3. Substance K contains two cations and two anions. Using the experimental information given in the Table, complete the observations and inferences and hence identify the two cations and anions.

S/n	Experiments	Observations	Inferences

1(i) Add sodium hydroxide to the first portion of clear solution White gelatinous precipitate forms, insoluble in excess Presence of Al ³⁺
1(ii) Add dilute HNO3 and AgNO3 to second portion White precipitate forms Presence of Cl
2 Add hydrochloric acid to residue from step 1 Effervescence observed, gas evolved with pungent smell Presence of CO ₃ ²⁻
3(i) Add dilute sodium hydroxide to first portion of solution in step 2 Pale green precipitate forms, insoluble in excess Presence of Fe ²⁺
\mid 3(ii) \mid Add dilute ammonia to second portion of solution in step 2 \mid Pale green precipitate forms \mid Confirms Fe ²⁺ \mid
4 Confirmatory tests for each ion Al³+ confirmed by amphoteric ppt, AgNO₃ ppt confirms Cl⁻ Confirm presence of Al³+ and Cl⁻
Conclusion:

The two cations in the sample K are Al^{3+} and Fe^{2+} ; the anions are Cl^- and CO_3^{2-} .