THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2020

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- C1: Sodium oxalate, Na₂C₂O₄ solution: 3.35 g in 0.5 dm³
- C2: Potassium permanganate (KMnO₄) solution
- C3: Hydrated iron(II) ammonium sulfate, FeSO₄(NH₄)₂SO₄·XH₂O: 33.3 g in 1.0 dm³
- C4: Dilute sulfuric acid

Thermometer

Summary:

10 cm³ of solution C1 required 22.50 cm³ of solution C2

10 cm³ of solution C3 required 25.00 cm³ of solution C2

Questions

- (a) Calculate the:
- (i) Molarity of potassium permanganate

Molar mass of $Na_2C_2O_4 = 134$ g/mol

Moles of $Na_2C_2O_4 = 3.35 \div 134 = 0.025$ mol in 0.5 dm³

Molarity of C1 = $0.025 \div 0.5 = 0.05 \text{ mol/dm}^3$

Reaction:

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ - - > 2Mn^{2+} + 8H_2O + 10CO_2$$

From stoichiometry:

5 mol C₂O₄²⁻ reacts with 2 mol KMnO₄

Moles of $C_2O_4^{2-}$ in $10 \text{ cm}^3 = 0.05 \times 10 \div 1000 = 0.0005 \text{ mol}$

Moles of KMnO₄ = $(2/5) \times 0.0005 = 0.0002$ mol

Volume of $KMnO_4 = 22.50 \text{ cm}^3 = 0.0225 \text{ dm}^3$

Molarity = $0.0002 \div 0.0225 = 0.00889 \text{ mol/dm}^3$

(ii) Concentration of potassium permanganate in g/dm³

Molar mass of $KMnO_4 = 158 \text{ g/mol}$

Concentration = $0.00889 \times 158 = 1.4056 \text{ g/dm}^3$

(iii) Molarity of iron(II) salt

Reaction:

$$MnO_4^- + 5Fe^{2+} + 8H^+ - - > Mn^{2+} + 5Fe^{3+} + 4H_2O$$

1 mol KMnO₄ reacts with 5 mol Fe²⁺

Moles of KMnO₄ = $0.00889 \times 25 \div 1000 = 0.000222$ mol

Moles of $Fe^{2+} = 0.000222 \times 5 = 0.00111 \text{ mol}$

In $10 \text{ cm}^3 = 0.01 \text{ dm}^3$

Molarity = $0.00111 \div 0.01 = 0.111 \text{ mol/dm}^3$

(iv) Concentration of anhydrous iron(II) salt in g/dm³

Molar mass of FeSO₄(NH₄)₂SO₄·XH₂O = 284 + 18X

Mass = $33.3 \text{ g in } 1.0 \text{ dm}^3$

Moles = 0.111 mol

Concentration = $0.111 \times (284 + 18X)$

We'll solve X in part (b)

(b) Find the value of X in the formula FeSO₄(NH₄)₂SO₄·XH₂O

Molar mass = $33.3 \div 0.111 = 300$

300 - 284 = 16

 $X=16\div18\approx0.89\approx1$

So,
$$X = 1$$

Molar mass = 284 + 18 = 302 g/mol

Concentration = $0.111 \times 302 = 33.522$ g/dm³

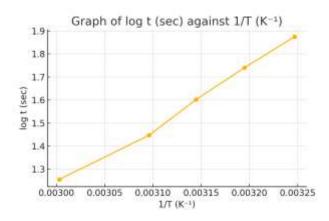
2. You are provided with the following:

T1: 0.02 M KMnO₄

T2: 0.05 M oxalic acid in 0.5 M H₂SO₄

Thermometer and stopwatch

(a) Write half ionic equations for the reaction.


Oxidation:

$$C_2O_4^{2-}$$
 ----> $2CO_2 + 2e^-$

Reduction:

$$MnO_4^- + 8H^+ + 5e^- - Mn^{2+} + 4H_2O$$

(b) Plot a graph of log t (sec) against 1/T (K⁻¹)

(c) Use the graph to determine the activation energy of the reaction

To solve question 2(c) and determine the activation energy (Ea), we use the Arrhenius equation in its linear form:

$$log t = (Ea / 2.303R) \times (1/T) + constant$$

From the plotted graph of log t versus 1/T, we obtain the slope of the line:

slope =
$$-Ea / (2.303 \times R)$$

Where:

 $R = 8.314 \text{ J/mol} \cdot \text{K}$

Slope (from graph) = -10.328

Now plug into the equation:

$$Ea = -slope \times 2.303 \times R$$

$$Ea = -(-10.328) \times 2.303 \times 8.314$$

$$Ea = 10.328 \times 2.303 \times 8.314$$

Ea = 49539.08 J/mol

Convert to kJ/mol:

$$Ea = 49539.08 \div 1000 = 49.5 \text{ kJ/mol}$$

So, the activation energy of the reaction is 49.5 kJ/mol.

3.

Table 1: Experimental Table

	Observations	Inferences
(a)(i) Add sodium hydroxid precipitate forms, insoluble in	·	tion White gelatinous
(a)(ii) Add dilute HNO3 and Presence of Cl ⁻	l AgNO₃ to the second portion White pre	cipitate forms
(b) Add hydrochloric acid to released Presence of CO ₃ ²⁻	o the residue from (a) Effervescence obs	erved, gas with pungent smell
(c)(i) Add NaOH to the firs excess Presence of Fe ²⁺	t portion of the solution from (b) Pale gre	een precipitate forms, insoluble in
(c)(ii) Add dilute ammonia Confirms Fe ²⁺	to second portion of solution from (b) Pa	le green precipitate forms
•	est for each ion White ppt with AgNO ₃ co Confirm presence of Cl ⁻ and Fe ²⁺	onfirms Cl ⁻ , brown ppt with
Conclusion:		

The two cations in the sample U are Al^{3+} and Fe^{2+} ; the anions are Cl^- and CO_3^{2-} .