THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2021

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

U1: A solution containing hydrochloric acid and acetic acid

U2: 0.1 M sodium hydroxide solution

POP: Phenolphthalein indicator MO: Methyl orange indicator

Table 1: Table of results (assumed standard titres for accurate calculations)

Summary

- (i) The volume of the pipette used was 25 cm³
- (ii) 25 cm³ of U1 required 21.6 cm³ of U2 when MO was used, and 14.2 cm³ of U2 when POP was used

Ouestions

- (a) Calculate the concentration of the acid solution, U1, in g/dm³ when:
- (i) POP was used (for strong acid, HCl):

Volume of $U2 = 14.2 \text{ cm}^3 = 0.0142 \text{ dm}^3$

Moles of NaOH = $0.1 \times 0.0142 = 0.00142$ mol

HCl + NaOH ----> NaCl + H₂O (1:1)

Moles of HCl in $25 \text{ cm}^3 = 0.00142 \text{ mol}$

In 1 dm³: $0.00142 \times 1000 \div 25 = 0.0568$ mol

Mass = $0.0568 \times 36.5 = 2.0752 \text{ g/dm}^3$

(ii) MO was used (for total acid: HCl + CH₃COOH):

Volume of $U2 = 21.6 \text{ cm}^3 = 0.0216 \text{ dm}^3$

Moles of NaOH = $0.1 \times 0.0216 = 0.00216$ mol

Moles of total acid in $25 \text{ cm}^3 = 0.00216 \text{ mol}$

In $1 \text{ dm}^3 = 0.00216 \times 1000 \div 25 = 0.0864 \text{ mol}$

Assume 0.0568 mol is HCl, then CH₃COOH = 0.0296 mol

Mass = $0.0568 \times 36.5 + 0.0296 \times 60 = 2.0752 + 1.776 = 3.8512 \text{ g/dm}^3$

(b) What is the colour change during titration:

When MO was used: yellow to orange-red

When POP was used: pink to colourless

(c) Name the compounds reacted during the first and second titrations

First titration (MO): sodium hydroxide reacted with both hydrochloric acid and acetic acid

Second titration (POP): sodium hydroxide reacted with hydrochloric acid only

2. You are provided with the following:

A1: A solution of 0.2 M sodium thiosulphate

A2: A solution of 0.1 M hydrochloric acid

A3: Distilled water

Stop watch/clock

A sheet of white paper marked X

Table 2: Experimental Table (assume realistic times in seconds):

Expe	riment V	olume of A1 (cr	n³) Volume o	f A3 (cm ³)	Volume of	A2 (cm ³) Time (s) $1/\text{time } (s^{-1})$
(a)	2	8	10	65	0.0154	I
(b)	4	6	10	43	0.0233	
(c)	6	4	10	30	0.0333	1
(d)	8	2	10	23	0.0435	
(e)	10	0	10	19	0.0526	

Questions

(a) Write the ionic equation for the reaction.

$$S_2O_3^{2-} + 2H^+ - S(s) + SO_2(g) + H_2O$$

(b) Calculate the value of m.

Using experiments (a) and (b):

Rate $\propto [S_2O_3^{2-}]^m$

 $Rate_1/Rate_2 = ([A1]_1/[A1]_2)^m$

 $0.0154 / 0.0233 = (2 / 4)^m$

 $0.660 = (0.5)^m$

 $\log(0.660) = m \times \log(0.5)$

m = log(0.660)/log(0.5) = -0.180/-0.301 = 0.60

Approximate m = 1

(c) Given n = 2, find K for (a) and (b)

Rate = $K [A1]^m [A2]^n$

 $K = rate / ([A1]^m \times [A2]^n)$

Convert volumes to concentrations:

Total volume = $2 + 8 + 10 = 20 \text{ cm}^3 = 0.02 \text{ dm}^3$

[A1] =
$$(0.2 \times \text{vol A1}) / 20$$

[A2] = $(0.1 \times 10) / 20 = 0.05 \text{ M}$

For (a):

$$[A1] = 0.2 \times 2 / 20 = 0.02 \text{ M}$$

$$K = 0.0154 / (0.02^{1} \times 0.05^{2}) = 0.0154 / (0.02 \times 0.0025)$$

$$K = 0.0154 / 0.00005 = 308$$

For (b):

$$[A1] = 0.2 \times 4 / 20 = 0.04 M$$

$$K = 0.0233 / (0.04 \times 0.0025) = 0.0233 / 0.0001 = 233$$

Comment: K should be constant; variation shows experimental error or non-ideal behaviour.

- (d) From the experiment conducted, is it possible to find value of n? No. A2 volume is constant in all trials, hence n cannot be determined.
- (e) What is the order of reaction in this experiment with respect to thiosulphate? Since $m \approx 1$, order = 1 with respect to thiosulphate.
- 3. Sample M is a simple salt containing one cation and one anion.

Questions

(i) Prepare a relevant Table showing the qualitative analysis results.

Test	Observation	Inference
 Appearance	White crystalline solid	 Possible chloride or nitrate
Heating	Colourless gas evolved	Volatile acid present
Solubility	Soluble in water	Ionic compound
NaOH solution	White ppt soluble in excess	Zn ²⁺ present
$ FeSO_4 + H_2SO_4 $	Brown ring formed	NO ₃ ⁻ ion confirmed
Lead ethanoate + heat	White ppt formed	SO ₄ ²⁻ ion possibly present
Confirmatory test: AgNO ₃ in HNO ₃	White ppt	Cl ⁻ confirmed

(ii) Write a balanced chemical equation for reaction in (b) (heating):

$$NH_4NO_3 ----> N_2O + 2H_2O$$
 or

$$Zn(NO_3)_2 ----> 2NO_2 + O_2 + ZnO$$
 (depending on salt identity)