THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION **EXAMINATION**

132/3A

CHEMISTRY 3A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 3:20 Hours

Year: 2021

Instructions

- 1. This paper consists of three (3) questions. Answer all questions.
- 2. Question number one (1) carries twenty (20) marks and the other two (2) carry fifteen (15) marks each.
- 3. Qualitative Analysis Guide (QAG) sheet authorized by NECTA may be used.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones and any unauthorised materials are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. You may use the following atomic masses:

H = 1, C = 12, O = 16, Cl = 35.5.

Page 1 of 4

- You are provided with the following:
 - A solution containing hydrochloric acid and acetic acid;
 - 0.1 M sodium hydroxide solution; U2:
 - POP: Phenolphthalein indicator;
 - Methyl orange indicator. MO:

Procedure

- Using a pipette filler, pipette 20 or 25 cm³ of a solution U1 into a conical flask.
- Add two to three drops of MO indicator.
- Titrate the solution against solution U2 until a colour change is observed.
- Record the first titre value.
- Add two to three drops of POP.
- Continue to titrate until the second colour change is observed.
- Record the second titre value.
- (viii) Repeat the titration steps (i) to (vii) three more times and record the results as shown in Table 1.

Burette Reading	Pilot	1	2	3
Final readings (cm ³) using MO				
Final readings (cm ³) using POP				
Initial readings (cm ³)				
Volume used (cm ³) using MO				
Volume used (cm ³) using POP				

Summary

(i)	The volume of the pipette used was				
(ii)	cm ³ of U1 required	cm ³ of	U2 when I	MO was	used, and
	cm ³ of U2 when POP was used.				

Questions

- Calculate the concentration of the acid solution, U1, in g dm⁻³ when:
 - POP was used.
 - (ii) MO was used.
- What is the colour change during titration when MO was used as an indicator and when POP was used.

- Name the compounds reacted during the first and second titrations (c)
- You are provided with the following:

A1: A solution of 0.2 M sodium thiosulphate;

A2: A solution of 0.1 M hydrochloric acid;

A3: Distilled water;

Stop watch/clock;

A sheet of white paper marked X.

Theory

The rate of reaction between thiosulphate and an acid is given by:

 $\frac{d[\text{thiosulphate}]}{dt} = K[\text{thiosulphate}]^{m}[\text{acid}]^{n}, \text{ where } K \text{ is the rate constant and}$ the integers \mathbf{m} and \mathbf{n} are orders of reaction with respect to thiosulphate and acid.

Procedure

- Put a 50 cm³ beaker on top of a letter X on the white paper in such a way that, the mark is clearly seen through the bottom of the beaker.
- Measure 2 cm³ of A1 and 8 cm³ of A3 and put them in the beaker placed on top of a sheet of white paper in procedure (i) above.
- (iii) Measure 10 cm³ of A2 and pour in the beaker containing A1 and A3 and immediately start a stop watch.
- (iv) Record the time taken for the precipitation to obscure the mark X.
- (v) Repeat the experiment for different sets of volumes as shown in Table 2:

Table 2: Experimental Table

Table 2: Experimental Table								
Experiment	Volume of A1 (cm ³)	Volume of A3 (cm ³) water	Volume of A2 (cm ³)	Time (sec)	1/time (s ⁻¹)			
	^	o o	10					
(a)	2	0	10					
(b)	4	6	10					
(c)	6	4	10					
(d)	8	2	10					
(e)	10	0	10					

Questions

- Write the ionic equation for the reaction. (a)
- Calculate the value of m. (b)

- Given that, the value of n = 2, find the value of K for experiments (a) and (b), then comment on the value of K obtained.
- From the experiment conducted, is it possible for the value of n to be found? Give a reason for your answer.
- What is the order of reaction in this experiment with respect to thiosulphate?
- Sample M is a simple salt containing one cation and one anion. Carefully, carry out qualitative analysis experiment to identify the ions present in the salt based on the following tests:
 - Appearance of the sample.
 - Action of heat on the sample. (b)
 - Solubility. (c)
 - Action of aqueous sodium hydroxide on solution of M.
 - Action of freshly prepared FeSO₄ solution on solution of M followed by concentrated (d) (e) H₂SO₄ through the side of the test tube.
 - Action of lead ethanoate and then boil. (f)
 - Perform a confirmatory test for the cation and anion. (g)

Questions

- Prepare a relevant Table showing the qualitative analysis results. (i)
- Write a balanced chemical equation for the reaction in experiment (b).