THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A CHEMISTRY 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2023

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following solutions:

T1: A solution containing a mixture of NaOH and Na₂CO₃

T2: 0.2 M hydrochloric acid

POP: Phenolphthalein indicator

MO: Methyl orange indicator

Questions

(a) Record your results in a tabular form.

Answer:

| Burette Readings (cm³) | First end point | Second end point | First titre volume | Second titre volume | Pilot 13.6 34.0 13.6 20.4 1 | 13.6 34.0 13.6 20.4 2 13.6 13.6 34.0 20.4 3 13.6 34.0 13.6 20.4 Average 13.6 34.0 13.6 20.4

What was the volume of the pipette used?

The volume of the pipette used was 25 cm³.

Calculate the average titre values (cm³) of T2 in presence of POP and MO.

Average titre value with $POP = 13.6 \text{ cm}^3$

Average titre value with $MO = 34.0 \text{ cm}^3$

What is the colour change when:

(i) POP was used?

The colour changed from pink to colourless.

(ii) MO was used?

The colour changed from yellow to red.

Write a balanced chemical equation for the reaction under:

(i) POP

$$NaOH + HC1 ----> NaC1 + H2O$$

(ii) MO

$$Na_2CO_3 + 2HC1 ----> 2NaC1 + H_2O + CO_2$$

Why was POP used first instead of MO in this experiment?

POP was used first to identify the amount of sodium hydroxide, which is a strong base. Since phenolphthalein changes colour at higher pH levels and reacts only with strong bases, it gives an accurate endpoint for NaOH before Na₂CO₃ begins to react. MO is used afterward to detect the endpoint for sodium carbonate, which is a weaker base.

Calculate:

(i) the concentration of sodium carbonate in g/dm³

Volume of T2 used for $Na_2CO_3 = 34.0 - 13.6 = 20.4 \text{ cm}^3$

Moles of HCl = $0.2 \times 20.4 / 1000 = 0.00408$ mol

Moles of Na₂CO₃ = $0.00408 \div 2 = 0.00204$ mol

Concentration in 25 cm³ = 0.00204 mol

In
$$1 \text{ dm}^3 = 0.00204 \times (1000 \div 25) = 0.0816 \text{ mol}$$

Mass =
$$0.0816 \times 106 = 8.6496 \text{ g/dm}^3$$

(ii) the concentration of sodium hydroxide in g/dm^3

Volume of T2 used = 13.6 cm^3

Moles of HCl = $0.2 \times 13.6 / 1000 = 0.00272 \text{ mol}$

Moles of NaOH = 0.00272 mol

In $1 \text{ dm}^3 = 0.00272 \times (1000 \div 25) = 0.1088 \text{ mol}$

 $Mass = 0.1088 \times 40 = 4.352 \text{ g/dm}^3$

(iii) the percentage composition of each component in T1

Total mass = 8.6496 + 4.352 = 13.0016 g

%
$$Na_2CO_3 = (8.6496 \div 13.0016) \times 100 = 66.5\%$$

% NaOH = $(4.352 \div 13.0016) \times 100 = 33.5\%$

2. You are provided with the following:

P1: A solution containing 49.6 g/dm³ of Na₂S₂O₃·5H₂O

P2: Dilute HCl

Distilled water

A white plain paper marked X

Stop watch/clock

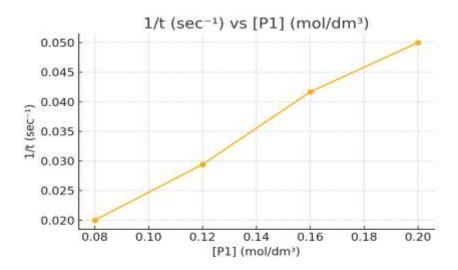
Questions

(a) Record your results in a tabular form.

Answer:

| Volume of P1 (cm³) | Volume of Distilled Water (cm³) | Volume of P2 (cm³) | [P1] (mol/dm³) | t (Sec) | 1/t (Sec $^{-1}$) | [P1] × t (mol/dm 3 ·Sec) |

4


Find this and other free resources at: http://maktaba.tetea.org

8	2	5	0.160	24	0.0417	3.84	
6	4	5	0.120	34	0.0294	4.08	
4	6	5	0.080	50	0.0200	4.00	

(b) Plot a graph of [P1] (mol/dm³) against time, t (sec).

The graph should show a negative correlation: as [P1] increases, time decreases.

(c) Plot a graph of 1/t (sec⁻¹) against [P1] (mol/dm³).

(d) Study the results and the graphs then answer the following questions:

(i) What is the effect of concentration of Na₂S₂O₃ on the rate of reaction?

As the concentration of Na₂S₂O₃ increases, the rate of reaction increases (reaction is faster, time is shorter).

(ii) What is the order of reaction with respect to Na₂S₂O₃?

The reaction is first order with respect to Na₂S₂O₃.

(iii) How did you reach your conclusion in (c)(ii)?

Because the graph of 1/t against [P1] is a straight line through the origin, which is characteristic of a first-order reaction.

(iv) Comment on the value of the product of concentration and time; that is $[P1] \times t$.

The values of [P1] \times t remain nearly constant across all trials, further supporting that the reaction is first-order with respect to Na₂S₂O₃.

3. You are provided with sample U containing two cations and one anion. Perform the experiments given in Table 2 and record the observations. Make appropriate inferences and hence identify the two cations and anion.

Table 2: Experimental Table

S/n Experiments	Observations	Inferences						
(a) Observe sample U.								
(b) Heat a small portion of the sample in a dry test tube. Colourless pungent gas evolved Ammonium ion present								
(c) Perform a flame test. No	characteristic flame colour	No Group I or II metal cations						
(d) Add concentrated sulphuric acid to a small portion of the sample. Effervescence with colourless gas evolved Likely presence of carbonate or sulfite								
(e) To the small portion of solutio Fe ²⁺ present	n, add dilute sodium hydroxide.	Green precipitate formed						
(f)(i) To the filtrate, add potassium hexacyanoferrate(II). $ $ Deep blue precipitate forms $ $ Confirm Fe ²⁺ (Turnbull's blue) $ $								
(f)(ii) Dissolve residue in aqua regia, then add excess ammonia solution. White fumes evolved, pungent gas released NH ₄ + confirmed								
(g) To solution, add dilute nitric a Absence of Cl ⁻ , Br ⁻ , I ⁻	cid followed by silver nitrate.	No precipitate formed						

Questions

(i) Write the molecular formula for the sample.

The molecular formula is (NH₄)₂Fe(SO₄)₂·6H₂O — ammonium iron(II) sulfate (Mohr's salt)

(ii) What are the cations and anion in the sample?

Cations: NH_4^+ and Fe^{2+}

Anion: SO₄²⁻