THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3A

CHEMISTRY 3A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 3:20 Hours

Year: 2023

Instructions

- 1. This paper consists of three (3) questions. Answer all the questions.
- 2. Question number one (1) carries 20 marks and the other two (2) carry 15 marks each.
- 3. Qualitative Analysis Guide (QAG) sheet authorised by NECTA may be used.
- 4. Mathematical tables and non programmable calculators may be used.
- 5. All writing must be in blue or black ink except drawing which must be in pencil.
- 6. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 7. Write your **Examination Number** on every page of your answer booklet(s).
- 8. You may use the following atomic masses:

$$H = 1$$
, $C = 12$, $O = 16$, $S = 32$, $Na = 23$.

- 1. You are provided with the following solutions:
 - T1: A solution containing a mixture of NaOH and Na₂CO₃;
 - T2: 0.2 M hydrochloric acid;
 - POP: Phenolphthalein indicator;
 - MO: Methyl orange indicator.

Procedure

- (i) Pipette 20 or 25 cm³ of **T1** into a clean conical flask.
- (ii) Add 3 drops of **POP** into **T1** in (i) and titrate the mixture against **T2** until a colour change is observed.
- (iii) Record the first titre value.
- (iv) After the first end point in step (ii), add 3 drops of **MO** in the solution mixture and continue titrating until the second colour change is observed.
- (v) Record the second titre value.
- (vi) Repeat the procedures (i) to (v) three times. Record your results as shown in Table 1.

Table 1: Table of Results

Burette Readings (cm ³)	Pilot	1	2	3
Second end point				*
First end point				
Initial reading				
First titre volume				
Second titre volume			•	

Sum	mary					
		cm ³ of T1 required cm ³ of T2 in presence of POP and				
-		cm ³ of T2 in presence of MO for complete reaction.				
Que	stions					
(a)	Expl	ain the colour change observed for the reaction taking place between:				
	(i)	T1 and T2 in the presence of POP.				
	(ii)	T1 and T2 in the presence of MO.				
(b)	Writ	e a balanced chemical equation for the reaction taking place in:				
12 14	(i)	procedure (ii).				
	(ii)	procedure (iv).				
(c)	Calc	Calculate;				
	(i)	the concentration of sodium carbonate in g/dm ³ .				
	(ii)	the concentration of sodium hydroxide in g/dm ³ .				
	(:::)	the percentage composition of each component in T1.				

- 2. You are provided with the following:
 - P1: A solution containing 49.6 g/dm³ of Na₂S₂O₃.5H₂O;
 - P2: Dilute HCl;

Distilled water:

A white plain paper marked X;

Stop watch/clock.

Procedure

You are required to investigate the effect of concentration of sodium thiosulphate on the rate of reaction between sodium thiosulphate and hydrochloric acid using the following steps:

- (i) Place a 50 cm³ beaker on top of the mark **X** in such a way that, the mark is clearly seen through the bottom of the beaker.
- (ii) Measure 10 cm³ of solution **P1** and pour it into a beaker in (i). Then, add 5 cm³ of **P2** and immediately start the stop watch. Stir the mixture gently and record the time taken for the disappearance of the mark **X**.
- (iii) Repeat the procedure (ii) using:
 - 8 cm³ of **P1**, 2 cm³ of water and 5 cm³ of **P2**.
 - 6 cm³ of **P1**, 4 cm³ of water and 5 cm³ of **P2**.
 - 4 cm³ of P1, 6 cm³ of water and 5 cm³ of P2.
- (iv) Record your results in a tabular form as follows:

Volume of P1 (cm ³)	Volume of Distilled Water (cm ³)	Volume of P2 (cm ³)	[P1] (mol/dm ³)	t (Sec)	1/t (Sec ⁻¹)	[P1] × t (mol/dm ³ Sec)
					4	

Questions

- (a) Plot a graph of [P1] (mol/dm³) against time, t (sec).
- (b) Plot a graph of 1/t (sec⁻¹) against [P1] (mol/dm³).
- (c) Study the results and the graphs then answer the following questions:

Page 3 of 4

- (i) What is the effect of concentration of Na₂S₂O₃ on the rate of reaction?
- (ii) What is the order of reaction with respect to Na₂S₂O₃?
- (iii) How did you reach your conclusion in (c) (ii)?
- (d) Comment on the value of the product of concentration and time; that is $[P1] \times t$.
- 3. You are provided with sample U containing two cations and one anion. Perform the experiments given in Table 2 and record the observations. Make appropriate inferences and hence identify the two cations and anion.

Table 2: Experimental Table

S/n	Experiments	Observations	Inferences
(a)	Observe sample U.		
(b)	Heat a small portion of the sample in a dry test tube.		
(c)	Perform a flame test.		
(d)	Add concentrated sulphuric acid to a small portion of the sample.	VI K	
(e)	To the small portion of solution of the sample, add dilute sodium hydroxide.		
(f)	To the small portion of the solution of the sample add dilute HCl followed by hydrogen sulphide. Filter the precipitates to obtain filtrate and residue then proceed as follows:		
	(i) To the filtrate, add potassium hexacyanoferrate(II).		
	(ii) Dissolve the residue in aqua regia and then add excess ammonia solution.		
(g)	To the small portion of the solution of the sample, add dilute nitric acid followed by silver nitrate.		

Questions

- (i) Write the molecular formula for the sample.
- (ii) What are the cations and anion in the sample?