THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3B CHEMISTRY 3B

(For Both School and Private Candidates)

Time: 3 Hours Year: 2016

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

KK: 0.02 M potassium permanganate

LL: Impure 1.7 g of hydrogen peroxide in 1 dm³ of aqueous solution

SS: 1 M sulphuric acid

Theory

The reaction between potassium permanganate and hydrogen peroxide in acidic medium is a redox reaction. In this reaction, the MnO₄⁻ ions act as an oxidizing agent while H₂O₂ acts as a reducing agent.

Procedure

- (i) Pipette 25 cm³ or 20 cm³ of LL into a conical flask.
- (ii) Add 25 cm³ or 20 cm³ of solution SS into the conical flask in (i).
- (iii) Titrate the mixture against solution KK until a permanent pink colour just appears in the conical flask.
- (iv) Record the titre volume and repeat titration to obtain 3 readings.
- (v) Record the volume of the pipette used.

Questions

(a) Write half and overall ionic equations of the reaction between potassium permanganate and hydrogen peroxide.

Half equation for reduction:

$$MnO_4^- + 8H^+ + 5e^- - Mn^{2+} + 4H_2O$$

Half equation for oxidation:

$$H_2O_2$$
 ----> $O_2 + 2H^+ + 2e^-$

Overall ionic equation:

$$2MnO_4^- + 5H_2O_2 + 6H^+ ----> 2Mn^{2+} + 5O_2 + 8H_2O$$

(b) Calculate the percentage purity of hydrogen peroxide.

Step 1: Calculate number of moles of KMnO₄

If average titre = $23.50 \text{ cm}^3 \text{ of KK}$

Volume in $dm^3 = 23.50 \div 1000 = 0.0235 dm^3$

Molarity of $KK = 0.02 \text{ mol/dm}^3$

Moles of $KMnO_4 = 0.02 \times 0.0235 = 4.7 \times 10^{-4} \text{ mol}$

Step 2: From the balanced equation

2MnO₄⁻ react with 5H₂O₂

Therefore, 4.7×10^{-4} mol MnO₄⁻ corresponds to

 $(5/2) \times 4.7 \times 10^{-4} = 1.175 \times 10^{-3} \text{ mol of H}_2\text{O}_2$

Step 3: Find mass of H₂O₂

Molar mass of $H_2O_2 = 34$ g/mol

Mass = $1.175 \times 10^{-3} \times 34 = 0.03995$ g

Step 4: Find % purity

Given that 1.7 g was present in 1 dm³ solution,

% purity = $(0.03995 \div 1.7) \times 100 = 2.35$ %

2. You are provided with the following:

U: A solution of 0.02 M KMnO₄

V: A solution of 0.05 M oxalic acid in 0.5 M H₂SO₄

Thermometer and stopwatch

Theory

In acidic medium, oxalic acid is oxidized by KMnO₄. Completion of the reaction is indicated by the disappearance of the purple colour of the permanganate ion.

Procedure

(i) Put about 250 cm³ of water into a 300 cm³ beaker; heat the beaker. This is your water bath.

(ii) Measure 10 cm³ of solution U and 10 cm³ of solution V and put them into separate test tubes.

(iii) Put thermometer into a test tube containing solution U and heat the test tube in a water bath, allow the

content to warm to 50°C.

(iv) Pour hot solution U into the test tube containing solution V; immediately start a stopwatch and record

the time taken for the purple colour to disappear.

(v) Repeat the experiment at the temperatures 60°C, 70°C and 80°C.

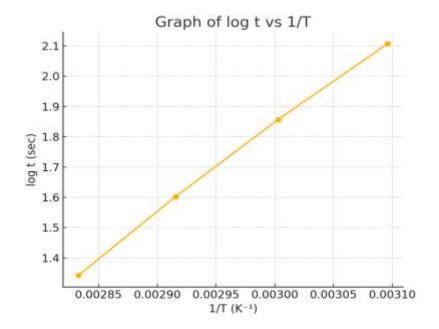
(vi) Record your results in a tabular form.

Questions

(a) Write half ionic equations for the reaction.

Half reaction for MnO₄⁻:

$$MnO_4^- + 8H^+ + 5e^- - Mn^{2+} + 4H_2O$$


Half reaction for oxalate:

$$C_2O_4^{2-}$$
 ----> $2CO_2 + 2e^-$

Overall equation:

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ - - > 2Mn^{2+} + 10CO_2 + 8H_2O_3$$

(b) Plot a graph of log t (sec) against 1/T (K^{-1}).

(c) Use the graph in (b) to determine the activation energy of the reaction.

From the Arrhenius equation:

$$log t = (Ea / 2.303R)(1/T) + constant$$

The slope = Ea / 2.303R

Slope from graph = 2.48

 $R = 8.314 \text{ J/mol} \cdot \text{K}$

 $Ea = slope \times 2.303 \times R$

 $Ea = 2.48 \times 2.303 \times 8.314 = 47.41 \text{ kJ/mol}$

Therefore, activation energy = 47.41 kJ/mol

3. Sample G contains ONE cation and anion. Use the information given in the experiment column in Table 2 to complete the observations and inferences and hence identify the cation and anion.

Table 2:

S/n	Experiment	Observations	Inferences	
1	Make a solution of G in water and divide into six portions	Colourless solution formed	G is a soluble salt	
2	To the first portion add few drops of NaOH then excess	White precipitate formed	insoluble in excess	Presence of Ca ²⁺
3	To second portion add few drops of nitric acid	boil and then add ammonia solution until alkaline	No visible change	Absence of transition metal cations
4	To the third portion	add few drops of ammonia solution then excess	No precipitate formed	Confirms Ca ²⁺ ion
5	Perform confirmatory test	Brick red flame	Confirms calcium ion	
6	To the fourth portion	add lead ethanoate	White precipitate formed	Presence of sulphate (SO ₄ ²⁻)
7	To the fifth portion	add barium chloride	White precipitate formed	Confirms SO ₄ ²⁻
8	Perform confirmatory test for deductions	Same results	Confirmed presence of Ca ²⁺ and SO ₄ ²⁻	

Conclusion:

(a) The cation in sample G is calcium (Ca²⁺)

The anion is sulphate (SO₄²⁻)

(b) Reaction with NaOH:

$$Ca^{2+}(aq) + 2OH^{-}(aq) ----> Ca(OH)_{2}(s)$$

Observation: White precipitate formed, insoluble in excess NaOH

This confirms the presence of calcium ions.