THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3B CHEMISTRY 3B

(For Both School and Private Candidates)

Time: 3 Hours Year: 2017

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- A: A mixture solution containing NaOH and Na₂CO₃
- B: 0.2 M hydrochloric acid solution
- C: Methyl orange indicator
- D: Phenolphthalein indicator

Questions:

- (i) Write the ionic equations for the reactions taking place in:
- (ii) Procedure (ii):

$$OH^- + H^+$$
 ----> H_2O

(iii) Procedure (iv):

$$CO_3^{2-} + 2H^+ ----> H_2O + CO_2(g)$$

- (b) Calculate the:
- (i) Molarities of NaOH and Na2CO3 in solution A

Suppose 25 cm³ of A required 20.00 cm³ of B in the presence of D (for NaOH) and an additional 15.00 cm³ of B in the presence of C (for Na₂CO₃)

NaOH reacts 1:1 with HCl

Na₂CO₃ reacts 1:2 with HCl

Moles of HCl used for NaOH = $(0.2 \times 20) / 1000 = 0.004$ mol

Moles of NaOH = 0.004 mol

Molarity of NaOH = $0.004 / 0.025 = 0.16 \text{ mol/dm}^3$

Moles of HCl used for $Na_2CO_3 = (0.2 \times 15) / 1000 = 0.003$ mol

Moles of $Na_2CO_3 = 0.003 / 2 = 0.0015$ mol

Molarity of $Na_2CO_3 = 0.0015 / 0.025 = 0.06 \text{ mol/dm}^3$

(ii) Concentration of NaOH and Na₂CO₃ in g/dm³

NaOH: $0.16 \times 40 = 6.4 \text{ g/dm}^3$

 Na_2CO_3 : $0.06 \times 106 = 6.36 \text{ g/dm}^3$

(iii) Percentage composition by mass of NaOH in A

Total mass = 6.4 + 6.36 = 12.76 g

% NaOH = $(6.4 / 12.76) \times 100 = 50.16\%$

2. You are provided with:

 J_1 : 49.6 g/dm³ Na₂S₂O₃·5H₂O

J₂: Dilute HNO₃

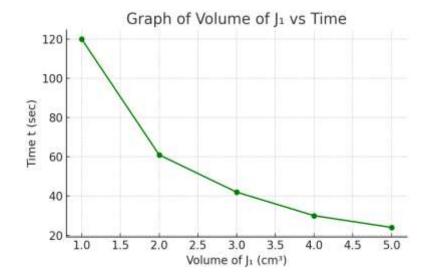
J₃: Distilled water

Table 1: Volume of the mixture

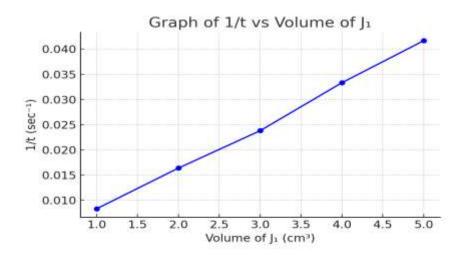
$$| S/n | J_1 (cm^3) | H_2O (cm^3) | J_2 (cm^3) | Time t (sec) | 1/t (s^{-1}) |$$

|----|-----|-----|

| 1 | 5 | 0 | 5 | 24 | 0.0417 |


|2 |4 |1 |5 |30 |0.0333 |

|3 |3 |2 |5 |42 |0.0238 |


|4 |2 |3 |5 |61 |0.0164 |

| 5 | 1 | 4 | 5 | 120 | 0.0083 |

(a) Plot a graph of [S₂O₃²⁻] against t

(b) Plot a graph of 1/t against [S₂O₃²⁻]

- (c) From the graphs, deduce order of reaction: The graph of 1/t vs [S₂O₃²⁻] is linear, so first-order
- (d) Na₂S₂O₃·5H₂O is first-order with respect to its concentration
- 3. Sample B contains two cations and a common anion

S/n Experiment		Observations		Inferences	
(a) Observe appearance of B	White o	rystalline solid		Inorganic salt	[
		4			

Find this and other free resources at: http://maktaba.tetea.org

(b)	Add 1 ml conc. H₂SO₄ to solid B	Effervescence, colorless gas	Presence of carbonate
(c)	Add MnO₂ then H₂SO₄	Brown fumes observed	Presence of nitrate
(d)	Make solution of B, divide into 4 parts	-	-
(e)	Add CuSO₄ then NaOH to 1st portion	Blue ppt formed	Presence of carbonate (CO₃²⁻)
(f)	Add NaOH and warm 2nd portion	Ammonia gas evolved	Presence of ammonium ion
(g)	NaOH + NH₄OH to 3rd portion	White ppt, soluble in excess	Presence of Zn²⁺

Conclusion:

- (i) The cations in B were Zn2+ and NH4+
- (ii) The anion in B was CO₃²⁻
- (iii) Sample B contained zinc carbonate and ammonium carbonate
- (iv) Ionic equations:
- (b) $CO_3^{2-} + 2H^+ ----> H_2O + CO_2$
- (f) $NH_4^+ + OH^- NH_3 + H_2O$