THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3B CHEMISTRY 3B

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2020

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

K: 0.25 dm³ solution of 0.79 g KMnO₄

L: 0.5 dm³ solution of 13.90 g FeSO₄·XH₂O

M: Dilute sulfuric acid

Summary:

Volume of pipette = 25 cm^3

25 cm³ of L required 23.30 cm³ of K

Questions

(a)(i) Half reactions:

Oxidation: $Fe^{2+} ----> Fe^{3+} + e^{-}$

Reduction: $MnO_4^- + 8H^+ + 5e^- ----> Mn^{2+} + 4H_2O$

(ii) Overall balanced ionic equation:

$$MnO_4^- + 5Fe^{2+} + 8H^+ - - > Mn^{2+} + 5Fe^{3+} + 4H_2O$$

(iii) Oxidant: MnO₄-

Reductant: Fe2+

(b) Why an indicator is not used

No indicator is needed because $KMnO_4$ is self-indicating (purple fades to colourless when reduced to Mn^{2+})

(c) Why sulfuric acid is used instead of HCl or HNO₃

Sulfuric acid does not react with KMnO₄. HCl and HNO₃ would interfere as they can be oxidized or decompose

- (d) Calculate:
- (i) Concentration of L in g/dm³

$$13.90 \text{ g in } 0.5 \text{ dm}^3 \rightarrow 13.90 \div 0.5 = 27.80 \text{ g/dm}^3$$

(ii) Concentration of K in g/dm³

$$0.79 \text{ g in } 0.25 \text{ dm}^3 \rightarrow 0.79 \div 0.25 = 3.16 \text{ g/dm}^3$$

(iii) Molarity of K

Molar mass of $KMnO_4 = 158 \text{ g/mol}$

Moles =
$$0.79 \div 158 = 0.005$$
 mol

Molarity =
$$0.005 \div 0.25 = 0.02 \text{ mol/dm}^3$$

(iv) Molarity of FeSO₄

From reaction: 1 mol MnO₄⁻ reacts with 5 mol Fe²⁺

Moles of
$$KMnO_4 = 0.02 \times 23.30 \div 1000 = 0.000466 \text{ mol}$$

Moles of
$$Fe^{2+} = 5 \times 0.000466 = 0.00233$$
 mol

Molarity in $25 \text{ cm}^3 = 0.00233$

In 1 dm³:
$$0.00233 \times 1000 \div 25 = 0.0932 \text{ mol/dm}^3$$

(v) Concentration of FeSO₄ in g/dm³

Molar mass of $FeSO_4 = 152 \text{ g/mol}$

Concentration = $0.0932 \times 152 = 14.1664 \text{ g/dm}^3$

(e) Find value of X in FeSO₄·XH₂O

Moles =
$$13.90 \div molar \ mass = 13.90 \div (152 + 18X)$$

This is in 0.5 dm³, so multiply by 2 to get molarity:

$$0.0932 = (13.90 \div (152 + 18X)) \times 2$$

$$0.0466 = 13.90 \div (152 + 18X)$$

$$152 + 18X = 13.90 \div 0.0466 = 298.28$$

$$18X = 298.28 - 152 = 146.28$$

$$X = 8.13 \approx 8$$

Value of X = 8

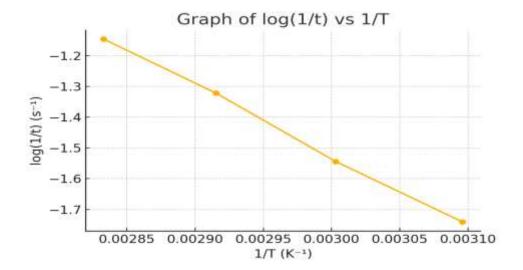
2. You are provided with:

H1: 0.05 M sodium thiosulphate

H2: 0.1 M nitric acid

Table 1: Experimental Data

$$\mid Temperature \ (^{\circ}C) \mid T\ (K) \mid t\ (s) \mid 1/T\ (K^{\text{--}1}) \mid Log 10\ t \mid$$


50	323 55	0.00310 1.740
60	333 35	0.00300 1.544
70	343 21	0.00292 1.322
80	353 14	0.00283 1.146

(a) Plot a graph of log10 (1/t) against 1/T

 $1/t = 1 \div \text{time} \rightarrow \text{take log} 10 \text{ of } 1/t \text{ and plot against } 1/T$

4

Find this and other free resources at: http://maktaba.tetea.org

(b) Determine slope from graph

Use linear regression on (1/T, log10(1/t)) values

(c) Use equation $K = Ae^{(-Ea/RT)}$, determine Ea

To calculate the activation energy (Ea) clearly from the graph of log(1/t) against 1/T, we use the Arrhenius equation in logarithmic form:

$$log(1/t) = -Ea / (2.303 \times R) \times (1/T) + log A$$

This matches the equation of a straight line:

$$y = mx + c$$

Where slope $m = -Ea / (2.303 \times R)$

From the graph:

Slope =
$$-2285.69$$

$$R = 8.314 \text{ J/mol} \cdot \text{K}$$

3. You are provided with a sample P containing two cations and one anion. Carry out the experiments described in Table 2. Record carefully your observations and make appropriate inferences. Finally, identify the cations and anion present in the sample P.

Table 2: Table of results

 $Ea = 2285.69 \times 2.303 \times 8.314$

 $Ea = 2285.69 \times 19.147$

S/n Experiment	Observations		Inferences	
		-		
(a) Appearance of the sample	P White crystalline solid	Pres	sence of a simple ion	nic salt
\mid (b) \mid Heat sample P strongly in ion (NO3 $^{-}) \mid$	a dry test tube Brown gas	evolved (smell	l of NO ₂) Presence	e of nitrate
(c)(i) Add dilute hydrochloric White precipitate forms	acid to the first portion follo Presence of SO ₄ ²⁻	wed by barium	chloride solution	l
(c)(ii) Add lead acetate to the chromate or lead cation (Pb ²⁺) if	• •	cipitate forms	Confirms presence	of
(c)(iii) To the third portion, ac Presence of Cu ²⁺	ld ammonia solution till in e	xcess Deep bl	ue solution forms	
(c)(iv) To the fourth portion, a dissolves in excess I	add sodium hydroxide solution Presence of Zn ²⁺	on till in excess	White precipitate f	forms,
(d) Perform confirmatory test confirms Cu ²⁺ , amphoteric ppt c		and Zn ²⁺	Deep blue	with NH
Conclusion:				
The two cations in the sample P	are Cu ²⁺ and Zn ²⁺ ; the anion	is NO ₃		
Now apply the formula:				
$Ea = -slope \times 2.303 \times R$				
$Ea = -(-2285.69) \times 2.303 \times 8.31$	4			

Ea = 43764.43 J/mol

 $Ea = 43764.43 \div 1000 = 43.76 \text{ kJ/mol}$

So, the activation energy of the reaction is 43.76 kJ/mol.