THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3B

CHEMISTRY 3B ACTUAL PRACTICAL B

(For Both School and Private Candidates)

Time: 3:20 Hours

Year: 2021

Instructions

- 1. This paper consists of three (3) questions. Answer all questions.
- 2. Question number one (1) carries twenty (20) marks and the other two (2) carry fifteen (15) marks each.
- 3. Qualitative Analysis Guide (QAG) sheet authorized by NECTA may be used.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 6. Write your **Examination Number** on every page of your answer booklet(s).
- 7. You may use the following atomic masses:

$$H = 1, C = 12, O = 16, S = 32, Na = 23, Cu = 64, I = 127.$$

1.		ou are provided with the following: (1: A solution made by dissolving 6.25 g of CuSO ₄ .XH ₂ O in distilled water to make a 250 cm ³ of a solution;					
	M						
	M.	•					
	M	4: A starch solution.					
	Th	eory					
	Ac	quantitative reaction between copper sulphate and potassium iodide can be represented by following equation: $2Cu^{2+} + 4I^{-} \rightarrow Cu I + I$					
		20d 1 11 / Cu ₂ 1 ₂ 1 1 ₂					
	The	liberated iodine can be titrated against sodium thiosulphate whose reaction can be					
	repr	resented as follows: $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$ (ii)					
	Pro	cedure					
	(i)	Pipette 20 cm ³ or 25 cm ³ of M1 into a conical flask. Add 10 cm ³ of solution M3 and shake well the mixture.					
	(ii)	i) Titrate the mixture at step (i) with solution M2 from the burette until a pale ye colour appears. Then, add about 2 cm ³ of solution M4. Continue titrating until the yellow colour just disappears and a pale yellow green colour appears.					
	(iii)	Repeat the procedures (i) and (ii) three more times and record your results in a tabular form.					
	Sum	mary					
	(i)	The volume of the pipette used was					
	(ii)	cm ³ of M1 liberated iodine that required cm ³ of M2 for					
		complete reaction.					
. (Quest	tions					
	(a)	Calculate the concentration of M2 in mol/dm ³ .					
		Write the half-reaction equations to show the oxidation and reduction processes taking					
((b)	place in procedure (ii) indicating in each case the oxidants and reductants.					
(c)	Calculate the;					
		(i) molarity of $M1$.					
		(ii) concentration of M1 in g/dm ³ .					
		(iii) value of X in the formula CuSO ₄ .XH ₂ O.					

1.

You are provided with the following:

C1: 0.2 M sodium thiosulphate solution;

C2: 0.1 M hydrochloric acid solution;

C3: Distilled water;

Stop watch/clock;

A white plain sheet of paper marked X.

Theory

The rate of reaction between thiosulphate ion and an acid is given by,

Reaction rate = $\frac{\delta[S_2O_3^{2-}]}{\delta t} = K[S_2O_3^{2-}]^m[H^+]^n$. Where m is the order of the reaction with respect to $S_2O_3^{2-}$ and n is the order of reaction with respect to H^+ .

Procedure

- (i) Place a 50 cm³ beaker on top of a white plain paper marked **X** in such a way that, the mark is clearly seen through the bottom of the beaker.
- (ii) Measure 2 cm³ of C1 and 8 cm³ of C3 and put them in a 50 cm³ beaker in procedure (i) above.
- (iii) Measure 10 cm³ of C2 and pour the content into a beaker in procedure (ii) and immediately start the stop watch.
- (iv) Record the time taken for the mark **X** to disappear.
- (v) Discard the contents and clean the conical flask, then, repeat the procedures (i) to (iv) using the specifications as indicated in Table 1.

Table 1: Experimental Table

Experiment	Volume of C1 (cm ³)	Volume of C3 (cm ³)	Volume of C2 (cm ³)	Time, t (sec.)	$\frac{1}{\text{time}}(\text{sec}^{-1})$
A	2	8	10		
В	4	6	10		
С	6	4	10		
D	8	2	10		
Е	10	0	10		

Questions

- (a) Write the ionic equation for the experiment.
- (b) Plot the graph of $\frac{1}{t}$ (vertical axis) against the volume of sodium thiosulphate (horizontal axis).

- (c) Determine the order of the reaction with respect to sodium thiosulphate from the
 (d) Given that the reaction of the reaction with respect to sodium thiosulphate from the
- (d) Given that, the value of n is 2, determine the order of reaction with respect to sodium thiosulphate using rate law equation.(e) Comment and the contraction of the
- (e) Comment on the order of reaction obtained in (c) and (d).
- (f) Find the value of K.
- (g) What causes the precipitate to occur in the reaction?
- 3. You are provided with sample **Z** containing **two** cations and **two** anions. Carry out the experiments described in Table 2. Record carefully your observations, make appropriate inferences and finally identify the cations and anion present in sample **Z**.

Table 2: Experimental Results

(a)	Toles	Experiment	Observed	
(4)	tube	a spatulaful of sample Z into a boiling test	Observations	Inference
	0	die mixtule for about one		
	1	Cot tune filter to		
		and divide the resulting solution :		
		portions.		
	(i)	To the first portion add NaOH solution.		
	(ii)	To the second portion add dilute HNO		
		followed by AgNO ₃ and then NH ₃		
		solution.		
	(iii)	To the third portion, add ammonia		
		solution.		
b)	(i)	Dissolve the residue in a little quantity of		
		HCl as possible and identify any		
		resulting gas.		
		Dilute the resulting solution in (a) (i)		
		with distilled water and divide the		
		solution into three portions.		
		To the first portion, add few drops		
	(ii)	of CaCl ₂ solution.		
		• To the second portion, add dilute		
		NH ₄ OH till no further change.		
		To the third portion add excess		
		ammonia solution followed by		
	1	ammonium oxalate solution.		

Questions

- (i) Write the molecular formulas for the samples.
- (ii) What are the cations and anions in the sample?

-9