THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3B CHEMISTRY 3B

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2023

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- J: A solution made by dissolving 1.58 g of KMnO₄ in a distilled water to form 0.5 dm³ of an aqueous solution;

K: A solution made by dissolving 7.91 g of Na₂S₂O₃·XH₂O in a distilled water to form 0.25 dm³ of an aqueous solution;

L: A solution of 10% KI;

M: A starch solution;

N: A dilute H₂SO₄ solution.

Theory

A quantitative reaction between potassium permanganate, KMnO₄ and potassium iodide, KI can be represented by the reaction:

$$MnO_4$$
-(aq) + I-(aq) -----> Mn^{2+} (aq) + I₂(aq)

The liberated iodine, I₂, is titrated against sodium thiosulphate, Na₂S₂O₃. The reaction taking place during this titration can be represented as:

$$I_2(aq) + 2S_2O_3^{2-} - S_4O_6^{2-} + 2I^{-}$$

Questions

- (i) The volume of the pipette used was _____. The volume of the pipette used was 25 cm³.
- (ii) _____ cm³ of J liberated iodine that required ____ cm³ of K for complete reaction.

Suppose volume of K used was 22.50 cm³ on average.

(a) State the function of M in this experiment.

The function of M (starch) is to act as an indicator. It forms a blue-black complex with iodine, making it easy to detect the endpoint of the titration when the blue-black colour disappears.

(b) State the main purpose of adding L into the conical flask containing an acidified J.

The purpose of adding L (potassium iodide) is to react with MnO₄⁻ from KMnO₄ to liberate iodine (I₂), which is then titrated.

(c) Why is it advisable to add M just close to the end point in this experiment?

It is advisable to add M close to the end point because starch forms a stable complex with iodine. If added too early, it may reduce sensitivity or delay the endpoint detection due to the stability of the starch-iodine complex.

(d) Write an overall balanced reaction equation for the whole experiment.

$$MnO_4^- + 8H^+ + 5I^- + 10S_2O_3^{2-} - Mn^{2+} + 5I^- + 5S_4O_6^{2-} + 4H_2O_1^{2-}$$

- (e) Calculate the:
- (i) concentration of KMnO₄ in g/dm³
- 1.58 g in 0.5 dm³ means:

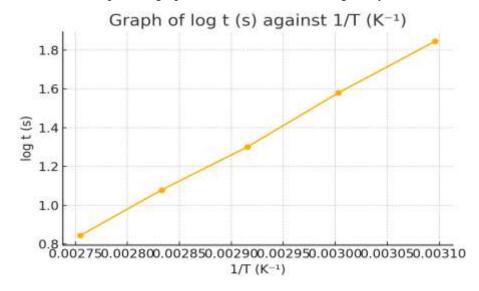
$$= 1.58 / 0.5 = 3.16 \text{ g/dm}^3$$

- (ii) molarity of $KMnO_4$ Molar mass of $KMnO_4 = 158$ g/mol Moles = 1.58 / 158 = 0.01 mol In 0.5 dm³, Molarity = 0.01 / 0.5 = 0.02 mol/dm³
- (iii) concentration of $Na_2S_2O_3 \cdot XH_2O$ in g/dm³ 7.91 g in 0.25 dm³ = 7.91 / 0.25 = 31.64 g/dm³
- (iv) molarity of $Na_2S_2O_3$ Molar mass of $Na_2S_2O_3=158$ g/mol Assume no water of crystallization yet: Moles = 7.91 / 158 = 0.0501 mol In 0.25 dm³: Molarity = 0.0501 / 0.25 = 0.2004 mol/dm³
- (v) concentration of Na₂S₂O₃ in g/dm³ = Molarity × Molar mass = $0.2004 \times 158 = 31.86 \text{ g/dm}^3$
- (f) Find the value of X in Na₂S₂O₃·XH₂O Molar mass from solution = 7.91 / 0.0501 = 157.9 g/mol Let molar mass = $158 + (18 \times X) = 157.9$ 157.9 158 = 18X X = 5
- 2. You are provided with the following:
 A: A solution of 0.02 M potassium permanganate;
 C: A solution of 0.05 M oxalic acid in 0.5 M sulphuric acid;
 A thermometer (0°-100 °C);
 Stop watch/clock.

Theory

In acidic medium, oxalic acid is oxidized by potassium permanganate. Completion of the reaction is indicated by the disappearance of the purple colour of permanganate ions:

$$2MnO_4^-(aq) + 5C_2O_4^{2-}(aq) + 6H^+(aq) ----> 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$$
 Questions


(a) Write ionic redox half equations for this experiment.

$$C_2O_4^{2^-}$$
 ----> $2CO_2 + 2e^-$
 $MnO_4^- + 8H^+ + 5e^-$ ----> $Mn^{2^+} + 4H_2O$

(b) Plot a graph of log t (s) against 1/T (K^{-1}).

Temperature (°C)	Temperature (K)	Time (t) sec	$\mid 1/T (K^{-1}) \mid$	log t (s)	
			-		
50	323	70	0.003096	1.8451	
60	333	38	0.003003	1.5798	
70	343	20	0.002916	1.3010	
80	353	12	0.002832	1.0792	
90	363	7	0.002755	0.8451	

Use this table to plot the graph with 1/T on x-axis and log t on y-axis.

(c) Calculate the activation energy (Ea) of the reaction for the experiment.

From the slope of graph:

Slope = -Ea /
$$(2.303 \times R)$$

Use two points: (0.003096, 1.8451) and (0.002755, 0.8451)

Slope =
$$(0.8451 - 1.8451) / (0.002755 - 0.003096) = -1.0000 / -0.000341 = 2932.55$$

$$Ea = 2.303 \times 8.314 \times 2932.55 = 56196 \text{ J/mol} = 56.2 \text{ kJ/mol}$$

3. Sample B contains two cations and one anion. Perform the experiments given in Table 2 and record the observations and inferences.

Table 2: Experimental Table

S/n Experiment	Observations	Inferences		
(a) Observe sample B. Yellow		Possible presence of Pb ²⁺		
(b) Heat a small portion in dry test t	tube. Brown gas evolved	Presence of nitrate ion (NO ₃ ⁻)		
(c) Add conc. H ₂ SO ₄ to small portion	on Effervescence observed]	NO ₂ gas evolved confirms NO ₃ -		
(d) Perform flame test Blue-g	reen flame	Presence of Cu ²⁺		
(e) Add NaOH solution Blue pr	recipitate	Cu ²⁺ present		
(f) Add HNO3 then AgNO3 then NH	I ₃ White ppt soluble in exces	s NH ₃ Confirms presence of	of	
Cl ⁻				
(g)(i) Add H2S gas in HCl, filter, ad	d acetic acid and lead acetate to	o filtrate Yellow precipitate		
forms Confirm Pb ²⁺				
(g)(ii) Dissolve residue in aqua regi	a and add excess NH3	Deep blue solution		
Confirms Cu ²⁺				

Questions

- (i) Write the molecular formula for the sample.
- The molecular formula is Pb(NO₃)₂·CuCl₂
- (ii) What are the cations and anion in the sample?

Cations: Cu²⁺ and Pb²⁺ Anion: Cl⁻ and NO₃⁻