THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3C CHEMISTRY 3C

(For Both School and Private Candidates)

Time: 3 Hours Year: 2013

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

T₃: A solution containing 0.65 g of impure potassium dichromate (K₂Cr₂O₇) in 0.10 dm³ of distilled water

T₂: A solution made by dissolving 0.04 moles of sodium thiosulphate pentahydrate (Na₂S₂O_{3.5}H₂O) in 0.4 dm³ of distilled water

T₄: 10% potassium iodide solution

T₅: 1M sulphuric acid

T₆: Starch solution

Theory

Acidified potassium dichromate reacts quantitatively with potassium iodide solution liberating iodine according to the equation:

$$Cr_2O_7^{2-} + 14H^+ + 6I^- - 2Cr^{3+} + 3I_2 + 7H_2O ...(1)$$

The liberated iodine can be titrated against sodium thiosulphate and the reaction taking place between iodine and thiosulphate can be represented by the equation:

$$2S_2O_3^{2-} + I_2 - S_4O_6^{2-} + 2I^- ...(2)$$

Procedure

- (i) Pipette 20 cm³ or 25 cm³ of solution T₁ into a clean conical flask
- (ii) Add 20 cm 3 or 25 cm 3 of solution T_4 followed by 20 cm 3 or 25 cm 3 of solution T_3 and shake the mixture
- (iii) Immediately titrate the mixture against solution T₂ from the burette until the solution becomes pale yellow
- (iv) Add about 2 cm³ of solution T₆ and continue titrating until a green colour appears
- (v) Repeat procedures (i) to (iv) three times and record your data in a tabular form

Questions

(a) Calculate the concentration of T₂ in mol/dm³

Moles of sodium thiosulphate = 0.04 mol

Volume = 0.4 dm^3

Concentration = $0.04 \text{ mol} \div 0.4 \text{ dm}^3 = 0.1 \text{ mol/dm}^3$

- (b) Calculate the concentration of pure potassium dichromate in
- (i) mol/dm³
- (ii) g/dm³

Molar mass of $K_2Cr_2O_7 = (2\times39) + (2\times52) + (7\times16) = 294$ g/mol

Mass = $0.65 \text{ g in } 0.10 \text{ dm}^3$

Concentration in $g/dm^3 = 0.65 \div 0.10 = 6.5 g/dm^3$

Concentration in mol/dm³ = $6.5 \div 294 = 0.0221 \text{ mol/dm}^3$

(c) Find the percentage purity of potassium dichromate

Let titre volume of $T_2 = V \text{ cm}^3$

Moles of T_2 used = $(0.1 \times V)/1000$

From equation (2), 1 mol of I₂ reacts with 2 mol of T₂

From equation (1), 1 mol of Cr₂O₇²⁻ produces 1.5 mol of I₂

So, mole ratio: 1 mol $Cr_2O_7^{2-}$: 3 mol I_2 : 6 mol I_2

Moles of $Cr_2O_7^{2-} = (0.1 \times V) / (1000 \times 6) = V / 60000 \text{ mol}$

Mass = $V / 60000 \times 294 = (V \times 294) \div 60000 g$

Purity = $[(V \times 294) \div 60000] \div 0.065 \times 100\% = [(V \times 294 \times 100) \div (60000 \times 0.65)]\%$

 $= (V \times 2940000) \div 39000 \approx 75.38V\%$

3

Find this and other free resources at: http://maktaba.tetea.org

Actual purity depends on V from experimental results.

(d) Write down the half reactions for the reaction equations (1) and (2) above

Equation (1) half reactions:

Oxidation (I⁻ to I₂):

$$2I^{-} - - > I_2 + 2e^{-}$$

Reduction ($Cr_2O_7^{2-}$ to Cr^{3+}):

$$Cr_2O_7^{2-} + 14H^+ + 6e^- - 2Cr^{3+} + 7H_2O$$

Equation (2) half reaction:

$$I_2 + 2e^- - > 2I^-$$

$$2S_2O_3^{2-} ----> S_4O_6^{2-} + 2e^-$$

2. You are provided with the following:

A₁: Distilled water

A₂: 4 g anhydrous copper (II) sulphate (CuSO₄)

A₃: 6 g copper (II) sulphate pentahydrate (CuSO₄·5H₂O)

Thermometer and Stirrer

Cotton wool

Procedure

- (i) Take 100 ml beaker and put it into a 250 cm³ beaker. Fill the space between using cotton wool as an insulator
- (ii) Pour 50 cm³ of A₁ into a 100 cm³ beaker in (i)
- (iii) Stir the water and record the temperature, T₁
- (iv) Add A2 into a beaker containing water. Stir gently until dissolution is complete
- (v) Record the final temperature of the solution, T₂
- (vi) Clean and dry the beaker, stirrer and thermometer. Then repeat steps (i) to (v) using A₃
- (vii) Record your results in a tabular form as indicated in Table 1

Questions

(a) Find the temperature change $T = T_2 - T_1$ in each experiment

Let's assume from the experiment:

For A₂:
$$T_1 = 25$$
°C, $T_2 = 29.5$ °C $\rightarrow \Delta T = 29.5 - 25 = +4.5$ °C

For A₃:
$$T_1 = 25^{\circ}C$$
, $T_2 = 21.3^{\circ}C \rightarrow \Delta T = 21.3 - 25 = -3.7^{\circ}C$

So.

Temperature change for $A_2 = +4.5$ °C

Temperature change for $A_3 = -3.7$ °C

(b) Calculate the enthalpy of solution of each salt, given that the specific heat of water is $4.18 \text{ Jg}^{-1}\text{K}^{-1}$ and the density of water is 1 g/cm^3

Heat change, $Q = mc\Delta T$

m = 50 g (since 50 cm³ water, density = 1 g/cm³), $c = 4.18 \text{ Jg}^{-1}\text{K}^{-1}$

For A₂:

$$Q = 50 \times 4.18 \times 4.5 = 940.5 J$$

Moles of
$$CuSO_4 = 4 \div 159.5 = 0.0251 \text{ mol}$$

$$\Delta H = Q \div moles = 940.5 \div 0.0251 = +37475.3 \text{ Jmol}^{-1} = +37.48 \text{ kJmol}^{-1}$$

For A₃:

$$Q = 50 \times 4.18 \times (-3.7) = -772.3 \text{ J}$$

Moles of $CuSO_4 \cdot 5H_2O = 6 \div 249.5 = 0.02405 \text{ mol}$

$$\Delta H = -772.3 \div 0.02405 = -32118.1 \text{ Jmol}^{-1} = -32.12 \text{ kJmol}^{-1}$$

(c) Accepted values for the two experiments are:

$$\Delta H^{\circ}$$
soln (CuSO₄) = -66.10 kJmol⁻¹

$$\Delta H^{\circ}$$
soln (CuSO₄·5H₂O) = +11.30 kJmol⁻¹

How do the calculated enthalpies of each salt differ from the expected values? Give reasons.

For CuSO₄: Calculated $\Delta H = +37.48 \text{ kJmol}^{-1} \text{ vs accepted} = -66.10 \text{ kJmol}^{-1} \rightarrow \text{large difference and opposite sign.}$

For CuSO₄·5H₂O: Calculated $\Delta H = -32.12 \text{ kJmol}^{-1} \text{ vs accepted} = +11.30 \text{ kJmol}^{-1} \rightarrow \text{large difference and opposite sign.}$

Reasons for differences:

- Heat losses to surroundings despite insulation
- Incomplete dissolution of salts
- Impurities in salts
- Inaccurate temperature readings due to rapid dissolution or evaporation
- Differences in molar mass used due to hydrated vs anhydrous forms not fully accounted

surroundings.
3. You are provided with the following:
JJ: A solution of succinic acid in water
PP: 0.2 M sodium hydroxide
SS: Phenolphthalein indicator
OO: Diethyl ether
Theory
Ether and water are immiscible. When succinic acid is dissolved, it will distribute itself in the two liquids in such a way that
concentration of succinic acid in water / concentration of succinic acid in ether = constant.
In this experiment, you are required to determine the partition coefficient of succinic acid between water and diethyl ether at room temperature.
Procedure
Part 1
(i) Pipette 20 cm³ or 25 cm³ of JJ into a clean conical flask and add two drops of SS
(ii) Put PP into the burette and titrate it against JJ until colour change is observed. A single accurate titration is enough.
Summary:
cm³ of solution JJ required cm³ of PP for complete reaction
Part 2

Hence, the calculated enthalpies deviate significantly due to experimental errors and heat exchange with

- (i) Using a measuring cylinder measure 50 cm³ of OO and transfer it into a separating funnel
- (ii) Measure 50 cm³ of JJ and transfer it into a separating funnel containing OO and then shake well. Leave the mixture to stand for about 3 minutes
- (iii) Run the lower layer (aqueous layer) into a clean beaker. Measure 20 cm³ or 25 cm³ of the aqueous layer into a conical flask. Add to it two drops of SS
- (iv) Put PP into a burette and titrate it against the aqueous layer in a conical flask until there is a colour change. Record the volume of PP used. A single accurate titration is enough.

Summary:
cm³ of JJ required cm³ of PP for complete reaction
Questions
(a) The colour of the solution during titration changed from to
The colour of the solution changed from colourless to pink.
This is due to phenolphthalein which is colourless in acid and pink in base, indicating the endpoint of the reaction.
(b) Write down the equation for the reaction between JJ and PP
(-) ······ 1
Succinic acid (H ₂ C ₄ H ₄ O ₄) reacts with sodium hydroxide as follows:
$H_2C_4H_4O_4 + 2NaOH> Na_2C_4H_4O_4 + 2H_2O$
This shows a dibasic acid neutralised by two moles of base.

(c)(i) Calculate the concentration of JJ before it was mixed with OO in g/dm^3

Let's say from titration before mixing:

25 cm³ of JJ required 20.0 cm³ of 0.2 M NaOH

Moles of NaOH = $(0.2 \times 20.0)/1000 = 0.004$ mol

Since 2 mol NaOH reacts with 1 mol succinic acid:

Moles of succinic acid = $0.004 \div 2 = 0.002$ mol in 25 cm³

Concentration in $mol/dm^3 = (0.002 \times 1000)/25 = 0.08 \ mol/dm^3$

Molar mass of succinic acid = 118 g/mol

Concentration in $g/dm^3 = 0.08 \times 118 = 9.44 \text{ g/dm}^3$

(ii) Calculate the concentration of JJ in water after mixing with OO in g/dm³

Suppose after mixing, 25 cm³ of aqueous layer required 10.0 cm³ of 0.2 M NaOH

Moles of NaOH = $(0.2 \times 10.0)/1000 = 0.002$ mol

Moles of succinic acid = $0.002 \div 2 = 0.001$ mol

Concentration in mol/dm³ = $(0.001 \times 1000)/25 = 0.04 \text{ mol/dm}^3$

Concentration in $g/dm^3 = 0.04 \times 118 = 4.72 \text{ g/dm}^3$

(iii) Calculate the concentration of JJ in ether in g/dm³

Original concentration = 9.44 g/dm³

Aqueous concentration after extraction = 4.72 g/dm^3

Amount transferred to ether = 9.44 - 4.72 = 4.72 g

Volume of ether = $50 \text{ cm}^3 = 0.05 \text{ dm}^3$

Concentration in ether = $4.72 \div 0.05 = 94.4 \text{ g/dm}^3$

(iv) Partition coefficient of succinic acid between water and ether at the temperature of the experiment

K = concentration in water / concentration in ether = 4.72 ÷ 94.4 = 0.05

9

Find this and other free resources at: http://maktaba.tetea.org

4. Substance M contains a common cation and two anions. Use the information given in the experiment column in Table 2 to complete the observations and inferences and hence identify the common cation and the two anions.

S/n	Experiment	Observations	Inferences		
1	Appearance	White crystalline solid	Possible presence of chloride or sulphate		
2	Perform flame test	Yellow flame	Presence of Na ⁺ ion		
3	To a little sample M	add Conc. H ₂ SO ₄ and warm gently	Colourless gas with pungent smell evolved	turns blue litmus red	Presence of Cl ⁻ ion (HCl evolved)
4(i)	Add AgNO ₃ solution to first portion	White ppt formed	soluble in NH ₃	Confirms Cl ⁻ ion	
4(ii)	Add fresh FeSO ₄ and conc. H ₂ SO ₄ slowly	Brown ring formed at the junction	Presence of NO ₃ ⁻ ion		
4(iii)	Add BaCl ₂ solution	No ppt	Absence of SO ₄ ²⁻		
4(iv)	Add aqueous ammonia till excess	No ppt	Confirms Na ⁺ as cation (Group I	no ppt with NH ₃)	
5	Perform two confirmatory tests	Confirmations for Na ⁺ (yellow flame)	Cl ⁻ (white ppt with AgNO ₃)	NO ₃ ⁻ (brown ring)	Valid

Conclusion

The cation in the sample M is Na^+ and the anions are Cl^- and NO_3^- .