THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3C CHEMISTRY 3C

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2021

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

1. You are provided with the following:

A: A solution made by dissolving 1.58 g of KMnO₄ in a 0.5 dm³ of solution

B: A solution made by dissolving 5.8 g of Na₂S₂O₃·XH₂O in 0.25 dm³ of solution

C: A solution of 10% KI

D: A starch solution

E: A solution of dilute H₂SO₄

Summary:

Volume of pipette used = 25 cm^3

25 cm³ of A liberated iodine that required 23.50 cm³ of B for complete reaction

Questions

(a) State the role of solution D in this experiment.

Starch (solution D) is used as an indicator to detect the presence of iodine. It forms a blue-black complex with iodine and indicates the endpoint of titration by the disappearance of the colour.

(b) State the main purpose of adding solution C into a conical flask containing acidified solution of A.

KI (solution C) reacts with KMnO₄ to liberate iodine, which is then titrated against sodium thiosulphate.

(c) Why is it advisable to add solution D just close to the end point in this experiment?

Starch-iodine complex is stable; if added early, it can slow down the reaction and mask the endpoint. Adding it near the endpoint ensures a sharper and clearer colour change.

(d) Calculate:

(i) Concentration of A in g/dm³

Given: 1.58 g in 0.5 dm³

Concentration = $1.58 \div 0.5 = 3.16 \text{ g/dm}^3$

(ii) Molarity of A

Molar mass of $KMnO_4 = 158 \text{ g/mol}$

Moles = $1.58 \div 158 = 0.01 \text{ mol}$

Molarity = $0.01 \div 0.5 = 0.02 \text{ mol/dm}^3$

(iii) Molarity of Na₂S₂O₃

Volume of $B = 23.50 \text{ cm}^3 = 0.0235 \text{ dm}^3$

Molar ratio: 1 mol I2 reacts with 2 mol Na₂S₂O₃

Assume all I₂ came from 25 cm³ of A with 0.02 M KMnO₄

 $MnO_4^- + I^- - Mn^{2+} + I_2$

Moles of KMnO₄ = $0.02 \times 25 \div 1000 = 0.0005$ mol

From redox stoichiometry, 1 mol MnO₄⁻ liberates 1 mol I₂

So moles of $I_2 = 0.0005$ mol

Moles of $Na_2S_2O_3 = 2 \times 0.0005 = 0.001$ mol

Molarity = $0.001 \div 0.0235 = 0.0426 \text{ mol/dm}^3$

(iv) Concentration of Na₂S₂O₃ in g/dm³

 $Molar mass = 158 + (X \times 18)$

molar mass ≈ 248 g/mol

Concentration = $0.0426 \times 248 = 10.5648 \text{ g/dm}^3$

(e) Find the value of X in Na₂S₂O₃·XH₂O

Mass of salt = 5.8 g

 $molar \ mass = 158 + 5 \times 18 = 248$

Moles =
$$5.8 \div 248 = 0.0234$$
 mol

In
$$0.25 \text{ dm}^3$$
, $M = 0.0936 \text{ mol/dm}^3$,

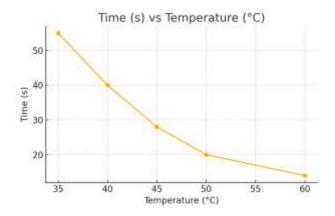
So
$$X = 5$$

2. You are provided with the following:

C1: A solution of 0.1 M Na₂S₂O₃

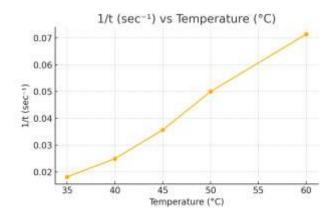
C2: A solution of 0.1 M HCl

Table 1: Experimental Data (assume reasonable times):


| Temperature ($^{\circ}$ C) | Time (sec) | 1/t (sec $^{-1}$) |

Questions

(a) Write a balanced reaction equation for the experiment.


$$S_2O_3^{2-} + 2H^+ - S(s) + SO_2(g) + H_2O$$

(b)(i) Plot a graph of time (t) against temperature (°C)

Graph shows decreasing curve as temperature increases

(b)(ii) Plot a graph of 1/t against temperature (°C)

Graph shows direct linear relation—1/t increases with temperature

(c) Study the graphs in (b) and explain how the rate of reaction changes with temperature.

As temperature increases, time for reaction decreases, meaning the rate increases. This is shown by the increase in 1/t. The kinetic energy of particles increases with temperature, causing more frequent and effective collisions.

3. Sample K is a simple salt containing one cation and one anion. Carefully carry out qualitative analysis experiments to identify the ions present.

(i) Prepare a relevant Table showing the qualitative analysis results.

Test	Observation	Inference
(a) Appearance of the sample	·	Possible chloride or sulfate salt
(b) Action of heat on the sample salt	No change or faint acidic gas	Possible presence of ammonium
(c) Solubility	Soluble in water	Ionic nature of salt
(d) Action of aqueous sodium hydrological Al³+ possibly present	roxide on solution of K W	hite gelatinous precipitate formed
(e) Action of ammonia solution on Confirms Al³+	solution of K White	e precipitate dissolves in excess
(f) Action of FeCl ₃ on K followed boiling Confirms presence of CH		ood red coloration disappears on
(g) Flame test for sample K $ $ No	distinct colour observed Confirm	ms absence of alkali/alkaline metals
(h) Confirmatory test Al ³⁺ and C	CH₃COO⁻ confirmed Sample	contains aluminium acetate
(ii) Write the molecular formula for Molecular formula: Al(CH ₃ COO) ₃	the sample.	
(iii) Write a balanced chemical equa	ation of the reaction in experiment	(b).
$(CH_3COO)^- + Fe^{3+}> [Fe(CH_3COO)^-]$	OO)] ²⁺ (red complex)	
On boiling:		
[Fe(CH ₃ COO)] ²⁺ + HCl> FeCl	3 + CH3COOH (blood red disappea	urs)