THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

132/3C

CHEMISTRY 3C

(ACTUAL PRACTICAL C)

(For Both School and Private Candidates)

Time: 3:30 Hours ANSWERS Year: 2023

Instructions

- 1. This paper consists of three questions, answer all questions
- 2. All writing should be in **blue** or **black** ink.
- 3. Communication devices and any unauthorised materials are **not** allowed in the examination room.
- 4. Write your **Examination Number** on every page of your answer booklet(s).

1. You are provided with the following:

B1: A solution of H₂O₂ prepared by diluting 1.00 cm³ with distilled water to form 250 cm³ of an aqueous solution;

B2: A solution of KMnO₄ made by dissolving 0.79 g in 250 cm³ of distilled water;

B3: A dilute H₂SO₄.

Procedure summary:

B1 (H₂O₂) is titrated against B2 (KMnO₄) in acidic medium.

Questions

(a) Write the two half reaction equations for the experiment.

Oxidation: $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$

Reduction: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

(b) Write a balanced ionic equation for the whole process.

$$2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$

(c) Calculate the concentration of the original solution of hydrogen peroxide in g dm⁻³.

Moles of KMnO₄ in 250 cm³ = $0.79 \div 158 = 0.005$ mol.

Concentration = $0.005 \div 0.25 = 0.02 \text{ M}$.

From the equation: 2MnO₄⁻ react with 5H₂O₂.

So 1 mole of KMnO₄ reacts with 2.5 moles of H₂O₂.

If mean titre of B2 = 25 cm³ (0.025 dm³), then moles $KMnO_4 = 0.02 \times 0.025 = 5.0 \times 10^{-4}$ mol.

Moles $H_2O_2 = 2.5 \times 5.0 \times 10^{-4} = 1.25 \times 10^{-3}$ mol.

If B1 pipetted was 25 cm³ (0.025 dm³), concentration = $1.25 \times 10^{-3} \div 0.025 = 0.05$ M.

Mass concentration = $0.05 \times 34 = 1.7 \text{ g dm}^{-3}$.

(d) Calculate the volume of oxygen gas produced at s.t.p when B1 reacted with an acidified B2.

From equation: $5H_2O_2 \rightarrow 5O_2$.

Thus 1 mol H₂O₂ produces 1 mol O₂.

Moles of H_2O_2 in 25 cm³ = 1.25 × 10⁻³ mol.

Moles $O_2 = 1.25 \times 10^{-3}$ mol.

Volume of O₂ at s.t.p = $1.25 \times 10^{-3} \times 22.4 \text{ dm}^3 = 0.028 \text{ dm}^3 = 28 \text{ cm}^3$.

2. You are provided with the following:

S: 0.5 M sodium thiosulphate solution.

T: 0.1 M nitric acid.

Theory: $S_2O_3^{2-} + 2H^+ \rightarrow SO_2 + S\downarrow + H_2O$

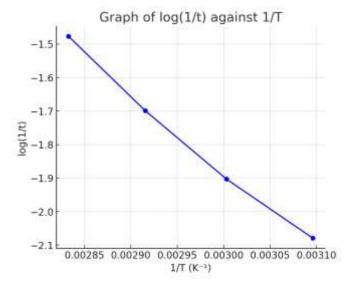

The reaction time is measured until the cross mark disappears.

Table 1 calculations (example with times in seconds):

T (°C)	T (K)	Time t (sec)	1/t (s ⁻¹)	log(1/t)
50	323	120	0.0083	-2.08
60	333	80	0.0125	-1.90
70	343	50	0.0200	-1.70
80	353	30	0.0333	-1.48

(a) Plot graph of log(1/t) vs 1/T.

This graph will be a straight line with negative slope.

Page 3 of 5

Find this and other free resources at: https://maktaba.tetea.org

(b) Determine the slope of the graph.

Slope =
$$\Delta log(1/t) \div \Delta(1/T)$$
.
From data: $(-1.48 - -2.08) \div (1/353 - 1/323)$.
= $0.60 \div (0.00283 - 0.00310)$.
= $0.60 \div -0.00027 = -2222$.

(c) Using Arrhenius equation, determine activation energy.

Arrhenius: slope = -Ea / (2.303R).

 $Ea = -slope \times 2.303R.$

 $R = 8.314 \ J \ mol^{-1} \ K^{-1}$.

 $Ea = 2222 \times 2.303 \times 8.314 \approx 42.5 \text{ kJ mol}^{-1}$.

Table 2: Experimental Table

S/n	Experiment	Observations	Inferences
(a)	Observe sample Z	White crystalline solid	Inorganic metallic salt
(b)	Heat small portion of the sample in a dry test tube	Colourless gas turns lime water milky	Presence of carbonate (CO ₃ ²⁻) anion
(c)	Perform a flame test	Yellow flame observed	Presence of sodium ion (Na+)

(d)	Add concentrated sulphuric acid to the dry sample	Effervescence with colourless gas that turns lime water milky	Confirms carbonate (CO ₃ ²⁻) anion
(e)	To the small portion of the prepared solution, add HCl followed by barium chloride solution	White precipitate insoluble in dilute HCl	Presence of sulphate (SO ₄ ²⁻) anion
(f)	To the small portion of the prepared solution, add excess ammonia solution and then pass hydrogen sulphide gas slowly for one minute	Black precipitate observed	Presence of Cu ²⁺ ion
(g)	Perform confirmatory tests for cations present in the sample	Blue solution with aqueous ammonia confirms Cu ²⁺ , yellow flame confirms Na ⁺	Cations are Na ⁺ and Cu ²⁺

Questions

(i) Write the molecular formula for the sample.

Since the anion is SO₄²⁻ and cations are Na⁺ and Cu²⁺, the molecular formula is Na₂Cu(SO₄)₂.

(ii) What are the cations and anion in the sample?

Cations: Sodium ion (Na⁺) and Copper(II) ion (Cu²⁺).

Anion: Sulphate ion (SO₄²⁻).