

THE UNITED REPUBLIC OF TANZANIA
NATIONAL EXAMINATIONS COUNCIL
ADVANCED CERTIFICATE OF SECONDARY EDUCATION
EXAMINATION

132/3C

CHEMISTRY 3C

ACTUAL PRACTICAL C

(For Both School and Private Candidates)

Duration: 3:20 Hours

ANSWERS

Year: 2025

Instructions

1. This paper consists of **three (3)** questions.
2. Answer **all** questions.
3. Question **one (1)** carries 20 marks and the other **two (2)**, carry 15 marks each.
4. Qualitative Analysis Guide (QAG) sheet authorised by NECTA may be used
5. Mathematical tables and non programmable calculators may be used.
6. Communication devices and any unauthorised materials are **not** allowed in the examination room.
7. Write your **Examination Number** on every page of your answer booklet(s).
8. You may use the following constants:
 - Atomic masses: H = 1, C = 12, O = 16, S = 32, Na = 23, Cl = 35.5, K = 39, Mn = 55
 - Density of water = 1 g/cm³
 - Specific heat capacity of water = 4.18 Jg⁻¹K⁻¹

1. Use the reagents and apparatus given to demonstrate how you would analyse hydrated $\text{Na}_2\text{S}_2\text{O}_3$ to determine the number of molecules of water of crystallisation.

W1: A solution of 0.08 mole of KMnO_4 in 2000 cm^3 ;

W2: A solution of $\text{Na}_2\text{S}_2\text{O}_3 \cdot \text{XH}_2\text{O}$ made by dissolving 14.88 g in 600 cm^3 of distilled water;

W3: A solution of 10% KI ;

W4: A starch solution;

W5: A solution of 1 M sulphuric acid.

Theory

A quantitative reaction between potassium permanganate and potassium iodide in acidic medium leads to the production of iodine. During titration, iodine reacts with sodium thiosulphate in presence of starch which acts as an indicator.

Procedure

- (i) Fill a burette with **W2**.
- (ii) Measure 10 cm^3 of **W1** into a conical flask. Add 10 cm^3 of distilled water. Swirl the mixture gently and add 10 cm^3 of **W3**. Add 10 cm^3 of **W5** into the mixture.
- (iii) Titrate **W2** against the mixture until a pale yellow colour is observed. Add 2 cm^3 of **W4** and continue to titrate until the colour of the solution changes from dark blue to colourless.
- (iv) Record the first titre value.
- (v) Repeat steps (i) to (iv) three times and record the titre values.

Questions

(a) Volume of burette used was 50.00 cm^3

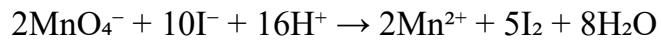
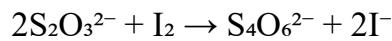

Volume of pipette used was 20.00 cm^3

TABLE OF RESULTS


Titration number	Pilot	1	2	3
Final volume (cm ³)	20.10	40.30	20.00	39.80
Initial volume (cm ³)	0.00	20.10	0.00	20.00
Volume used (cm ³)	20.10	20.20	20.00	19.80

$$\begin{aligned}
 \text{Average titre volume} &= (\text{Volume 1} + \text{Volume 2} + \text{Volume 3}) / 3 \\
 &= (20.20 + 20.00 + 19.80) \text{ cm}^3 / 3 \\
 &= 60.00 \text{ cm}^3 / 3 \\
 \therefore \text{Average titre volume was } &20.00 \text{ cm}^3
 \end{aligned}$$

(b) (i) From conical flask.

(ii) Reaction between iodine and sodium thiosulphate:

(c) From dilution law:

$$M_c V_c = M_d V_d$$

Molarity before dilution (M_c) = 0.04 mol/dm³

Volume before dilution (V_c) = 10.00 cm³

Molarity after dilution (M_d) = Required (?)

Volume after dilution (V_d) = 20.00 cm³

M_c = number of moles (mol) / Volume (cm³)

(c)

Volume = 20000 cm³

1 dm³ = 1000 cm³

? = 20000 cm³

$$= 1 \text{ dm}^3 \times 20000 \text{ cm}^3 / 1000 \text{ cm}^3$$

$$= 2 \text{ dm}^3$$

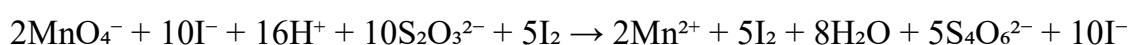
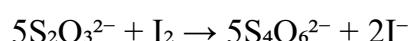
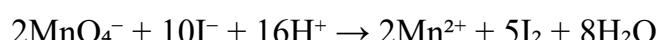
Number of moles = 0.08 mole of KMnO_4

$$\text{Mc} = 0.08 \text{ moles} / 2 \text{ dm}^3$$

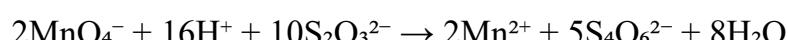
$$\text{Mc} = 0.04 \text{ mol/dm}^3$$

$\text{Vd} = \text{Vc} + \text{volume of distilled water}$

$$= 10.00 \text{ cm}^3 + 10.00 \text{ cm}^3$$




$$\text{Vd} = 20.00 \text{ cm}^3$$

$$\text{Md} = \text{McVc} / \text{Vd}$$


$$\text{Md} = 0.04 \text{ mol/dm}^3 \times 10.00 \text{ cm}^3 / 20.00 \text{ cm}^3$$

$$\therefore \text{Md} = 0.02 \text{ mol/dm}^3$$

(d) From reactions:

∴ Balanced equation:

(d)

$$\text{Molar mass} = 24.8 \text{ g/dm}^3$$

$$0.1 \text{ mol/dm}^3$$

$$\text{Molar mass} = 248 \text{ g/mol}$$

$$\text{From: } \text{Na}_2\text{S}_2\text{O}_3 \cdot x\text{H}_2\text{O} = 248 \text{ g/mol}$$

$$\text{Na}_2\text{S}_2\text{O}_3 \cdot x\text{H}_2\text{O} = 248 \text{ g/mol}$$

$$2(\text{Na}) + 2(\text{S}) + 3(\text{O}) + (\text{H}_2\text{O})_x = 248 \text{ g/mol}$$

$$158 \text{ g/mol} + (18x) \text{ g/mol} = 248 \text{ g/mol}$$

$$(18x) \text{ g/mol} = 90 \text{ g/mol}$$

$$18 \text{ g/mol} | 18 \text{ g/mol}$$

$$\therefore x = 5$$

Percentage composition = (water composition \times 100%) / total hydrated $\text{Na}_2\text{S}_2\text{O}_3$

Water composition = $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$

= $5\text{H}_2\text{O}$

= $5(18 \text{ g/mol})$

= 90 g/mol

Total hydrated $\text{Na}_2\text{S}_2\text{O}_3$ = 248 g/mol

Percentage composition = $(90 \text{ g/mol} \times 100\%) / 248 \text{ g/mol}$

= $0.3629 \times 100\%$

= 36.29%

\therefore Percentage composition of water in $\text{Na}_2\text{S}_2\text{O}_3 \cdot x\text{H}_2\text{O}$ was 36.29%.

2. Use the following reagents and the given apparatuses to determine the rate constant of the reaction:

R1: Hydrogen peroxide solution;

R2: A solution made by dissolving 7.9 g of sodium thiosulphate in 1 dm³ of distilled water;

R3: A solution made by dissolving 8.3 g of KI per litre in 0.5 M H_2SO_4 ;

Starch solution;

Distilled water;

100 cm³ beakers labelled **I** and **II**;

Stopwatch.

TABLE OF RESULTS

Volume of R1(cm ³)	30	25	20	15	10	5
Volume of distilled water (cm ³)	5	10	15	20	25	30
Time for blue colour to appear (sec)	11.5	17.4	21.4	27.1	43.6	96.4
Rate (1/time) (sec ⁻¹)	0.09	0.06	0.05	0.04	0.02	0.008

(a) Consider a graph of (1/t) against volume of H_2 .

(b) The order of reaction with respect to H₂ is the first order.

(c) From,

$$R = K [H_2O_2]$$

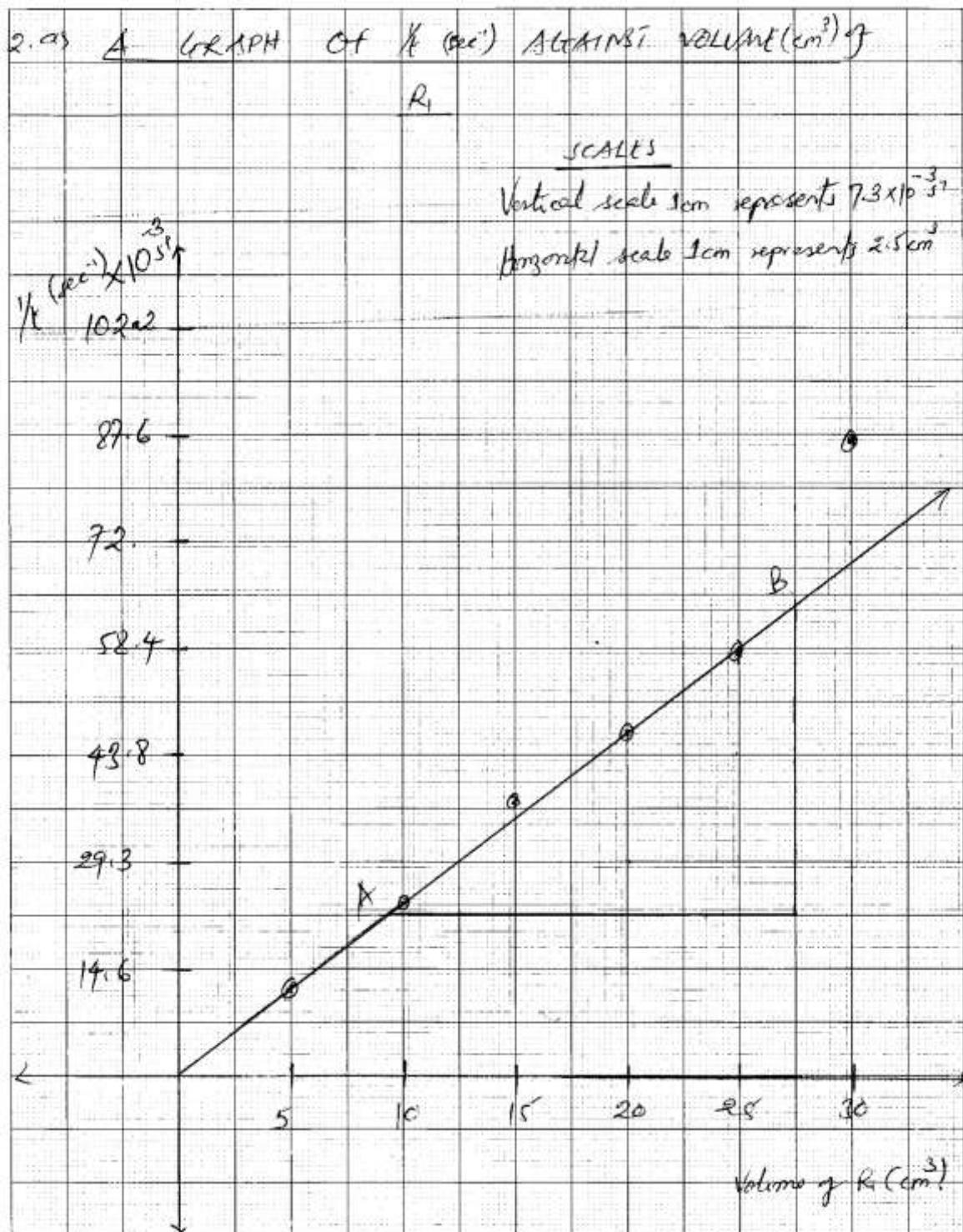
$$y = mx$$

$$\text{Slope (m)} = K$$

From the graph,

$$\text{Slope (m)} = \Delta y (\text{sec}^{-1}) / \Delta x (\text{cm}^3)$$

A (9.25 cm³, 0.0219 sec⁻¹)


B (27.5 cm³, 0.06424 sec⁻¹)

$$\text{Slope (m)} = (0.06424 \text{ sec}^{-1} - 0.0219 \text{ sec}^{-1}) / (27.5 \text{ cm}^3 - 9.25 \text{ cm}^3)$$

$$= 2.32 \times 10^{-3} \text{ s}^{-1} \text{ cm}^{-3}$$

$$\text{Rate constant (K)} = \text{Slope}$$

Therefor the rate constant is $2.32 \times 10^{-3} \text{ s}^{-1} \text{ cm}^{-3}$

3. Sample **RV** contains one cation and one anion. Using systematic qualitative analysis procedures analyse the sample. Carefully, record your experiments, observations and inferences as shown in Table 2. Finally, identify the anion and cation present in sample **RV**.

Systematic Qualitative Analysis

Table 2: Experiment Data

S/N	Experiment	Observation	Inference
1	A small amount of sample RV was dissolved in distilled water.	A white precipitate formed but partially dissolved on heating.	Indicates presence of slightly soluble chloride salt, likely <chem>PbCl2</chem> .
2	The solution obtained from step (1) was tested with dilute hydrochloric acid.	A white precipitate appeared and remained insoluble in excess HCl.	Confirms presence of Pb^{2+} ion, as <chem>PbCl2</chem> is sparingly soluble in cold water but more soluble in hot water.
3	The hot solution was allowed to cool slowly.	White needle-shaped crystals	Confirms presence of

		reappeared on cooling.	PbCl ₂ (lead chloride).
4	The filtrate was tested with potassium iodide solution.	A bright yellow precipitate formed.	Confirms presence of lead(II) ions as PbI ₂ (lead iodide).
5	The sample solution was tested with dilute sulphuric acid.	A white precipitate formed which did not dissolve in excess acid.	Indicates presence of lead(II) ion (formation of PbSO ₄).
6	A small amount of the sample solution was treated with silver nitrate solution.	A white curdy precipitate formed, soluble in dilute ammonia.	Confirms presence of chloride ion (Cl ⁻).
7	The sample solution was subjected to flame test.	No characteristic color observed.	Confirms presence of heavy metal cation (Pb ²⁺) which generally does not

			impart color to flame.
--	--	--	-----------------------------------

(a) Cation and Anion present in the sample:

The cation present is **Lead(II) ion (Pb²⁺)**.

The anion present is **Chloride ion (Cl⁻)**.

(b) Molecular Formula of the Sample:

The molecular formula of the sample is **PbCl₂ (Lead(II) Chloride)**.