THE UNITED REPUBLIC OF TANZANIA NA TIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATON

131/3A

PHYSICS PAPER 3A

ALTERNATIVE A PRACTICAL

TIME: 3 Hours 10 Minutes

25 May 1999

INSTRUCTIONS

- 1. Answer TWO (2) questions including question number ONE.
- 2. Use the first 10 minutes to read through the paper.
- 3. All calculations must be clearly presented in the answer booklet provided.
- 4. Mathematical tables, graph papers and electronic pocket calculators may be used.

- (a) The aim of this experiment is to determine the surface tension of the liquid labelled A.
 - (b) Diagram:

Figure 1.

(c) Procedure:

- (i) Arrange the apparatus as shown in figure 1 with the funnel resting on the clamp of a retort stand.
- (ii) Tighten the clip on the funnel to allow only drops of liquid A to pass through.
- (iii) Read the initial volume V_o of the liquid in the measuring cylinder. Then count about 100 drops and read again the new volume V of the liquid in the cylinder.
- (iv) While adding more liquid (A) in the finnel continue counting the number n of drops which have fallen and noting the volume V.
- (v) Record the values of V-V_o and n in a table.
- (d) Plot a graph of V V_o (vertical axis) against n (Horizontal axis); and determine its slope (s).
- (e) Using the beam balance and the measuring cylinder, determine the density p of liquid (A).
- (f) Hence determine the surface tension γ of liquid A from the equation

$$\gamma = (\pi)^{1/3} \rho g s^{2/3}$$
, where $g = 9.81 \text{ ms}^{-2}$

- 2. (a) The aim of this experiment is to determine whether liquid B obeys Newton's law or not.
 - (b) Procedure:

You are provided with a thermometer, a beaker, a stirrer, a stop watch or stop clock and liquid labelled B, which has been heated to about 90°C. Carry out the experiment whose aim is given in (a) above. Describe briefly the procedure and give the conclusion.

- 3. (a) The aim of this experiment is to determine the resistivity of the wire labelled W.
 - (b) <u>Circuit diagram.</u>

Figure 2

(c) Procedure:

Connect the accumulator E_2 in series with 100 cm of the wire labelled W, a standard resistor R_* of 5 Ω , variable resistor (resistance box or rheostat) R, and key (K_2) . Then connect the potentiometer circuit containing the accumulator E_1 , key (K_1) , potentiometer wire AB and the galvanometer G (with protective resistor) as shown in figure 2. J is a jockel.

Starting with a certain value of R, e.g. 1Ω , determine the balance length x when the galvanometer is connected to P. Then disconnect the correcting wire from terminal P and move it to Q. (see dotted line). With the same value of R determine the new balance length (y).

Repeat the above procedure for six other values of R, with R in the range from 1 Ω to 7 Ω .

- (d) Plot a graph of y (vertical axis) against x (horizontal axis).
- (e) Determine R₁, the value of the resistance of wire W from the relation.

$$y = (R_1 + R_2) x$$

$$R_1$$

- (f) Measure the diameter, d of wire W and hence determine the resistivity \mathbf{J} of wire W from the relation $\mathbf{J} = 0.785R_1d^2$ (SI units)
- (g) State any four sources of error in this experiment.