THE UNITED REPUBLIC OF TANZANIA

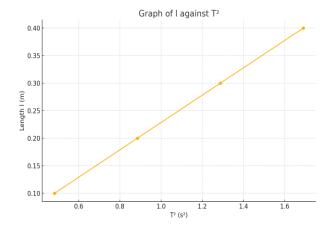
NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3A PHYSICS 3A

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2013


Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. The aim of this experiment is to determine the acceleration due to gravity, g, by simple pendulum.
- (e) Plot the graph of 1 against T².

Graph of l against T² gives a straight line.

(f) Determine the acceleration due to gravity, g.

From the relation
$$T^2 = (4\pi^2/g)(1+c)$$
, slope = $4\pi^2/g$ So,

slope =
$$T^2 / 1 = (1.690 - 0.483) / (0.40 - 0.10) = 1.207 / 0.30 = 4.023$$

Then $g = 4\pi^2 / \text{slope} = 39.48 / 4.023 = 9.81 \text{ m/s}^2$

This confirms that $g = 9.81 \text{ m/s}^2$

(g) Mention any two sources of errors.

Air resistance acting on the pendulum bob.

Parallax error or reaction time delay while using stopwatch.

- 2. The aim of this experiment is to determine the rate of heat loss from a calorimeter.
- (d) Plot a graph of $\log_{10}(\theta \theta A)$ against time.

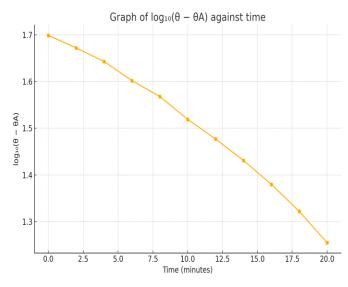
$$| t \text{ (min)} | \theta \text{ (°C)} | \theta - \theta A | \log_{10}(\theta - \theta A) |$$

$$| ------| ------| ------|$$

$$| 0 | 75 | 50 | 1.699 |$$

$$| 2 | 72 | 47 | 1.672 |$$

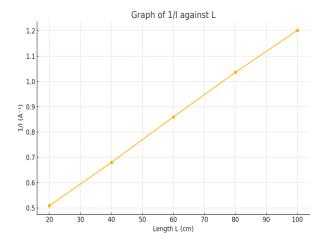
(e) Determine the value of k and constant A.


Using points (0, 1.699) and (20, 1.255):

$$k = (1.699 - 1.255) / 20 = 0.444 / 20 = 0.0222$$

$$A = 1.699$$

Equation: $\log_{10}(\theta - \theta A) = 1.699 - 0.0222t$


(f)(i) From the graph, the rate of heat loss reduces as the excess temperature decreases.

- (ii) This aligns with Newton's law of cooling: rate of heat loss is proportional to temperature difference between body and surroundings.
- 3. The aim of this experiment is to determine the resistivity ρ of the wire labeled X and the internal resistance r of the battery.
- (c) Tabulate your results.

$\mid Length \; L \; (cm) \mid Current \; I \; (A) \mid 1/I \; (A^{-1}) \mid$			
20	1.966	0.509	
40	1.471	0.680	
60	1.162	0.860	
80	0.965	1.036	
100	0.832	1.202	

(d) Plot a graph of 1/I against L.

Slope =
$$\Delta(1/I) / \Delta L = (1.202 - 0.509) / (100 - 20) = 0.693 / 80 = 0.00866$$

(e) Determine the slope and the 1/I intercept.

Slope = 0.00866

Intercept (at L = 0) = 0.509

(f) Measure and record the diameter of the wire.

Diameter = 0.50 mm = 0.0005 m

Radius = 0.00025 m

Cross-section A = πr^2 = 3.142 × (0.00025)² = 1.963 × 10⁻⁷ m²

(g) Using your graph, determine the resistivity ρ and internal resistance r. From the equation:

$$1/I = r/E + (\rho L)/(AE)$$

So slope = $\rho / (AE)$

Given slope = 0.00866, A = 1.963×10^{-7} m², E = 2V

$$\rho = slope \times A \times E = 0.00866 \times 1.963e - 7 \times 2 = 3.40 \times 10^{-9} \ \Omega m$$

Internal resistance r = Intercept \times E = 0.509 \times 2 = 1.018 $\Omega \approx$ 1 Ω as required.

4

Find this and other free resources at: http://maktaba.tetea.org