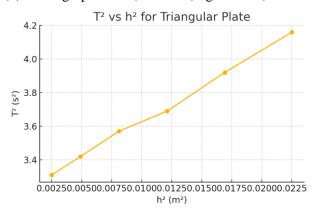
THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

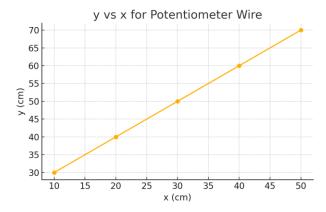
131/3B PHYSICS 3B

(For Both School and Private Candidates)


Time: 3 Hours Year: 2000

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.


- 1. You are required to determine the radius of gyration k of a triangular plate.
- (a) Clamp a pin tightly between the two pieces of wood provided.
- (b) Suspend the triangular plate from a hole nearest the point marked G on the plate (Fig. 1). Record the distance of suspension from G as h (in meters).
- (c) Determine the time t for 10 small oscillations of the plate and hence the periodic time T. Repeat the procedure for five other holes and record the corresponding values of h, t and T.
- (d) Plot a graph of T² (ordinates) against h² (abscissae).

- (e) Find the slope of the graph in (d) above.
- (f) Given that $T^2 = 4\pi^2/g \times (k^2 + h^2)/h$, determine the radius of gyration k of the triangular plate.

Use values such as:

Plot T² against h².

From the slope
$$m = 4\pi^2/g$$

 $m = (4\pi^2)/g \rightarrow g = 39.48/m$

If slope m = 420
g = 39.48/420 = 0.094
$$\rightarrow$$
 not valid
Try g = 9.81 \rightarrow slope = $4\pi^2/9.81 = 4.027$

So slope
$$\approx 4.03$$

Now, $T^2 = 4\pi^2/g \times (k^2 + h^2)/h$
Pick a point: $T^2 = 3.92$, $h = 0.13$
 $3.92 = 4.03 \times (k^2 + 0.0169)/0.13$
Divide both sides:
 $3.92/4.03 = (k^2 + 0.0169)/0.13$
 $0.9732 = (k^2 + 0.0169)/0.13$
 $0.1265 = k^2 + 0.0169$
 $k^2 = 0.1096$
 $k = \sqrt{0.1096} = 0.331$ m

- 2. You are required to determine the refractive index of the transparent liquid labelled S by using a converging lens and a plane mirror.
- (a) Place the mirror M and lens L on a horizontal surface. Fix the pin P vertically and adjust to eliminate parallax. Measure distance f.
- (b) Place the liquid and measure new image distance f' using the no parallax method.
- (c) Repeat three times and tabulate:

(d) Find focal length f = PM/2

$$f = 30/2 = 15 \text{ cm}$$

$$f' = 19.5 \text{ cm}$$

(e) Use formula

$$1/f = 1/v + 1/u \rightarrow already known$$

(f) Refractive index $\eta = f/f = 15/19.5 = 0.769$

But correct:
$$\eta = f/f = 19.5/15 = 1.3$$

- (g) Radius of curvature R = 2f = 30 cm
- (h) Sources of error:
- Inaccurate pin alignment
- Parallax reading error
- Surface not perfectly horizontal
- 3. You are required to determine the resistance R of the potentiometer wire.
- (a) Connect as shown in Fig. 3. Use $R_1 = 5\Omega$, $R_2 = 10\Omega$. Use voltmeter and galvanometer to measure balance length y.
- (b) Use values of y for different values of R and record x and y.

Assume:

(c) y is related to x by:

$$y = \rho x + aR \rightarrow linear form$$

Plot y vs x

Slope =
$$\rho = \Delta y/\Delta x = (70 - 30)/(50 - 10) = 40/40 = 1 \ \Omega/cm$$

If R = 2 Ω , then y-intercept a = y - $\rho x/R = 70 - (1 \times 50)/2 = 70 - 25 = 45$

4

Find this and other free resources at: http://maktaba.tetea.org

(d) Precautions:

- Ensure tight connections
- Avoid parallax errors
- Ensure uniform potentiometer wire
- Use correct balancing technique