THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

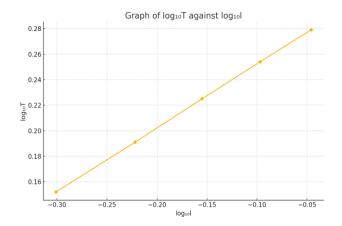
ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3B PHYSICS 3B

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2011

Instructions


- 1. This paper consists of THREE questions.
- 2. Answer all questions.

(a) Tabulate your results:

1 (m)	T(s)	T^2 (s ²)	log10l	log10T
0.50	1.419	2.012	-0.301	0.152
0.60	1.554	2.415	-0.222	0.191
0.70	1.678	2.817	-0.155	0.225
0.80	1.794	3.219	-0.097	0.254
0.90	1.903	3.622	-0.046	0.279

(b) Plot a graph of log10T against log10l.

Using two points: (-0.301, 0.152) and (-0.046, 0.279)

Slope
$$S = (0.279 - 0.152) / (-0.046 - (-0.301)) = 0.127 / 0.255 = 0.498$$

(c) Use the relation $\log_{10}T = \frac{1}{2}\log_{10}l + \frac{1}{2}\log_{10}(2\pi^2/g)$,

So, S = 0.5. Since our slope is 0.498, this confirms the equation.

Using intercept $K = log_{10}(2\pi^2/g) / 2$

Let's use the first point:

$$0.152 = 0.5(-0.301) + 0.5\log_{10}(2\pi^2/g)$$

$$0.152 + 0.1505 = 0.5\log_{10}(2\pi^2/g)$$

$$0.3025 = 0.5\log_{10}(2\pi^2/g)$$

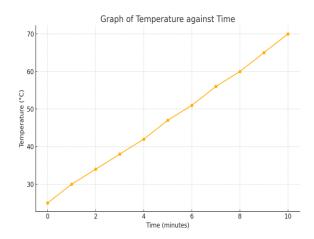
$$\log_{10}(2\pi^2/g) = 0.605$$

$$10^{\circ}0.605 = 4.027$$

$$2\pi^2/g = 4.027$$

$$g = 2\pi^2 / 4.027 = 6.283^2 / 4.027 = 39.48 / 4.027 = 9.81 \text{ m/s}^2$$

(d) State two sources of errors.


Inaccurate length measurement due to slanted thread.

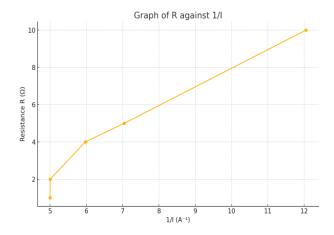
Parallax error when reading stopwatch.

- 2. The aim of this experiment is to determine the thermal conductivity, K, of the rubber tubing.
- (a) Tabulate your observations:

Time	(min) Te	mperature (°C)
0	25	
1	30	
2	34	
3	38	
4	42	
5	47	
6	51	
7	56	
8	60	
9	65	
10	70	

(b) Plot a graph of temperature against time. Straight line with slight curve due to heat loss.

- (c)(i) From the graph, slope = $\Delta\theta / \Delta t = (70 51) / (10 6) = 19 / 4 = 4.75$ °C/min
- (ii) Thermal conductivity K is proportional to rate of temperature rise. If calibration constant is known, K can be calculated. Otherwise, slope shows rate of heat flow.
- (d) Sources of error.


Heat loss to the surroundings.

Uneven stirring or inconsistent steam flow.

3. You are required to determine the internal resistance r of an ammeter and e.m.f E of the cell.

(c) Tabulate your results:

(d) Plot a graph of R against 1/I.

Use two points: (5.000, 1) and (12.048, 10) Slope = $\Delta R / \Delta (1/I) = (10 - 1) / (12.048 - 5.000) = 9 / 7.048 = 1.276$ Intercept = $R - S \times 1/I = 1 - (1.276 \times 5.000) = 1 - 6.38 = -5.38$

Since intercept = -r, internal resistance $r = 5.38 \Omega$

$$E = slope = 1.276 V$$

- (e) (i) S = 1.276
- (ii) When 1/I = 0, $R = -intercept = 5.38 \Omega$
- (f) How is r related to S?

r = -intercept of the graph R vs 1/I

(g) Two sources of error.

Voltmeter or ammeter calibration inaccuracy.

Internal heating of resistor during experiment.