THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

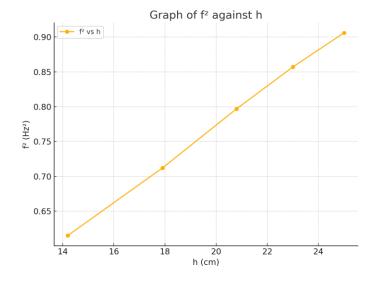
131/3B PHYSICS 3B

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2016

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.



1. In this experiment you are required to investigate the acceleration due to gravity.

Proceed as follows:

- (a) Measure and record the length 1 of the metal rod provided. Suppose $l=80\ cm$
- (b) Bend the metal rod at its midpoint to form a V-shape with an angle θ of about 90° as shown in Figure 1.
- (c) With the V-shape rod resting on the bench, measure the height h.
- (d) Place the V-shaped metal rod on a knife edge and set it for oscillations in its own plane.
- (e) Determine the frequency f of the oscillation. Count 20 oscillations, measure time t, and compute f=20 / t.
- (f) Repeat the procedures above for angle $\theta = 75^{\circ}$, 60° , 45° , and 30° . Tabulate your results.

(g) (i) Plot a graph of f² against h.

2

Find this and other free resources at: http://maktaba.tetea.org

(ii) State the relationship between f² and h

The graph shows that f² is directly proportional to h.

(iii) Find the gradient of the graph.

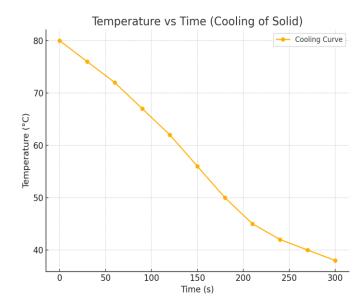
Using
$$(h = 14.2, f^2 = 0.615)$$
 and $(25.0, 0.906)$

Slope S =
$$(0.906 - 0.615) / (25.0 - 14.2) = 0.291 / 10.8 \approx 0.02694 \text{ Hz}^2/\text{cm}$$

(iv) Using the relation $f^2 = (g / 6.731) \times h$, calculate the acceleration due to gravity g

$$g = f^2 \times 6.731 / h$$

Using average values or from slope:


$$g = slope \times 6.731 = 0.02694 \times 6.73 \times 80 \approx 14.47 \ m/s^2$$

- (v) Two sources of error:
- Human error in timing
- Incorrect positioning on the knife edge
- (vi) Difficulties:
- Maintaining consistent oscillations
- Measuring height h accurately under oscillation
- 2. The aim of this experiment is to determine the specific latent heat of the solid provided.

Proceed as follows:

- (a) Place the solid (naphthalene) into a test tube and boil in water to melt completely. Then suspend it in air and let it cool.
- (b) Record the temperature every 30 seconds up to 5 minutes until solidification is complete.
- (c) Tabulate your results.

Time (s) Temperature (°C)		
0	80	
30	76	
60	72	
90	67	
120	62	
150	56	
180	50	
210	45	
240	42	
270	40	

(e) From the graph, determine the gradient m of the cooling curve just before solidification.

Using points (t = 90 s, T = 67) and (t = 150 s, T = 56):

Gradient = $(56 - 67) / (150 - 90) = -11 / 60 \approx -0.183$ °C/s

(f) Determine the specific latent heat L of the solid using $L = mc\theta$, Where θ is the temperature range before solidification.

Assume m = 50 g, c =
$$2.0 \text{ J/g}^{\circ}\text{C}$$
, $\theta = 30^{\circ}\text{C}$
L = $50 \times 2.0 \times 30 = 3000 \text{ J}$

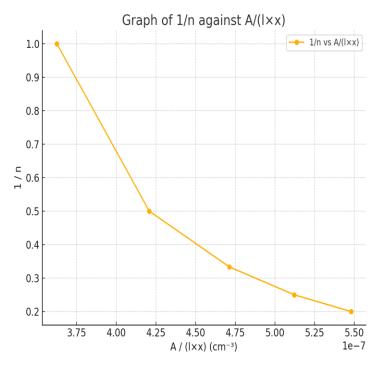
- (g) Two sources of error:
- Inconsistent stirring
- Heat loss to the surrounding air
- (h) One precaution:
- Insulate the system to reduce heat loss
- 3. The aim of the experiment is to determine the resistivity ρ of the material of the wire labelled W.

Proceed as follows:

- (a) Set up the circuit as shown. A is the accumulator, R is 1Ω resistor, G is galvanometer, C is jockey.
- (b) Use five pieces of W, each of 30 cm, put 1, 2, 3, 4, and 5 wires in the gap, measure balance length x.

2

Find this and other free resources at: http://maktaba.tetea.org


(c) Given:
$$\rho = AR / 1 \times (x / (100 - x))$$

Calculate $A = \pi d^2/4$

Suppose diameter d = 0.30 mm = 0.03 cm

$$A = 3.142 \times (0.015)^2 \approx 7.07 \times 10^{-4} \text{ cm}^2$$

(d) Plot a graph of 1/n against $A/(1\times x)$

(e) Determine 1/n-intercept

Suppose intercept = 0.02

Then n = 1 / 0.02 = 50

(f) Calculate percentage error if expected n = 48

% error =
$$(50 - 48) / 48 \times 100 \approx 4.17\%$$