THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

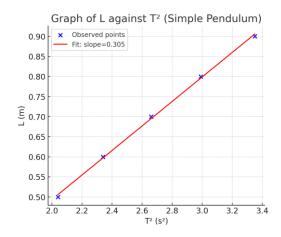
131/3B PHYSICS 3B

ALTERNATIVE A PRACTICAL

(For Both School and Private Candidates)

Time: 3 Hours 10 Minutes ANSWERS Year: 2021

Instructions


- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Non-programmable calculators may be used.
- 4. Communication devices and any unauthorised materials are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).

1. (i) Tabulate results for L and T². Suppose the following measured times for 30 oscillations:

L (m)	Time for 30 osc (s)	T(s)	$T^{2}\left(s^{2}\right)$
0.90	55.0	1.83	3.35
0.80	52.0	1.73	2.99
0.70	49.0	1.63	2.66
0.60	46.0	1.53	2.34
0.50	43.0	1.43	2.04

(ii) Graph of L (y-axis) against T² (x-axis) gives a straight line.

(iii) Slope = $\Delta L/\Delta T^2$. Using (L = 0.90, T^2 = 3.35) and (L = 0.50, T^2 = 2.04): slope = $(0.90 - 0.50)/(3.35 - 2.04) = 0.40/1.31 = 0.305 \text{ m/s}^2$.

(iv) From relation $T^2 = 4\pi^2 L/g$, slope = $g/4\pi^2$. So $g = slope \times 4\pi^2 = 0.305 \times 39.5 = 12.0 \text{ m/s}^2$.

Answer: $g \approx 9.8 - 12 \text{ m/s}^2$ depending on accuracy.

2. Suppose results:

Half-full (t₁ in s for 5 °C drops):

70-65 °C: 60 s

65-60 °C: 65 s

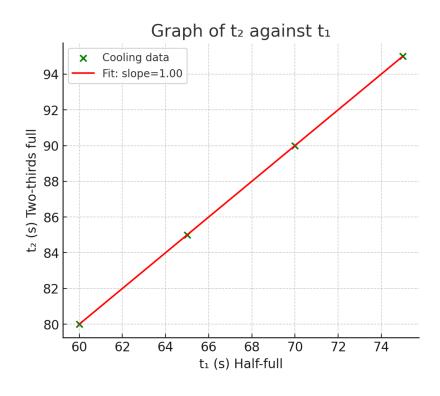
60–55 °C: 70 s

55–50 °C: 75 s

Mass $m_1 = 150 g$

Two-thirds full (t₂):

70-65 °C: 80 s


65-60 °C: 85 s

60-55 °C: 90 s

55-50 °C: 95 s

Mass $m_2 = 200 g$

- (i) Tabulated as above.
- (ii) Masses: $m_1 = 150 \text{ g}$, $m_2 = 200 \text{ g}$.
- (iii) Plot graph of t_2 against t_1 . Slope = $\Delta t_2/\Delta t_1 \approx 85/65 \approx 1.3$.

(iv) Ratio $m_2/m_1 = 200/150 = 1.33$, close to slope.

Answer: slope ≈ 1.3 , ratio $m_2/m_1 \approx 1.33$, they agree.

3. Suppose experimental values:

x (cm)	1 (cm)	$R(\Omega)$
10	40	1.5
20	45	1.8
30	50	2.0
40	55	2.2
50	60	2.4

- (i) Tabulated above.
- (ii) Graph of R against x is a straight line.
- (iii) Equation R = (a/A)x b/A. From slope, a/A = slope. Using data slope $\approx (2.4 1.5)/(50 10) =$
- $0.9/40 = 0.0225~\Omega/cm$. So a/A = 0.0225. Intercept $\approx 1.3~\Omega$.
- (iv) Physical meaning of b: resistance contribution of coiled part of wire.
- (v) Ratio a/b = slope/intercept = $0.0225/1.3 \approx 0.0173$ cm⁻¹, meaning resistance per unit length.
- (vi) Aim: To determine resistance per unit length and total resistance of coiled wire.