THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

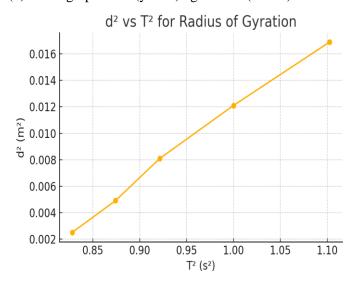
ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3C PHYSICS 3C

(For Both School and Private Candidates)

Time: 3 Hours Year: 1999

Instructions


- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. The aim of this experiment is to determine the radius of gyration, k, of the given wooden bar of length 1 m.
- (a) Suspend the wooden bar horizontally and balance it at its center of mass G. Measure its length L.
- (b) Suspend the bar using a pin at a distance d from the center of mass G, allowing it to swing vertically. Measure d and time for 20 oscillations.
- (c) Repeat with four different values of d.

No. d (m) Time	for 20 Osci	llations (sec)	Period T (s	$sec) \mid T^2 (sec^2)$	$ d^2(m^2) $	
	•					•	•
1 0.05		18.2		0.91	0.8281	0.0025	
2 0.07		18.7		0.935	0.8742	0.0049	
3 0.09		19.2		0.96	0.9216	0.0081	
4 0.11		20.0		1.00	1.0000	0.0121	
5 0.13		21.0		1.05	1.1025	0.0169	

(d) Plot a graph of d² (y-axis) against T² (x-axis)

(e) Given that
$$d^2 = k^2(T^2g/4\pi^2 - 1)$$
, rearranged as: $d^2 = mT^2 + c$ (linear form)

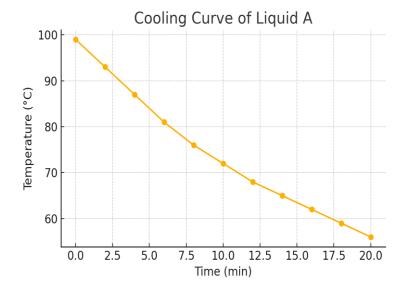
From the slope $m=gk^2 / 4\pi^2$ Let slope from graph be m=0.015

Then
$$k^2 = (4\pi^2 \times m) \ / \ g = (39.48 \times 0.015) / 9.81 = 0.0604$$
 $k = \sqrt{0.0604} = 0.2458 \ m$

Compare with value of $k = L/\sqrt{12} = 1/\sqrt{12} \approx 0.2887$ m So experimental $k \approx 0.2458$ m vs theoretical ≈ 0.2887 m

- (f) Errors:
- Air resistance affecting oscillation period
- Inaccurate timing due to human reaction
- 2. The aim of this experiment is to determine the boiling points of liquids A and B and their rate of cooling at 70°C.

Procedure:


(i) Boil 200 $\mbox{cm}^{\mbox{\scriptsize 3}}$ of liquid A and measure boiling temperature:

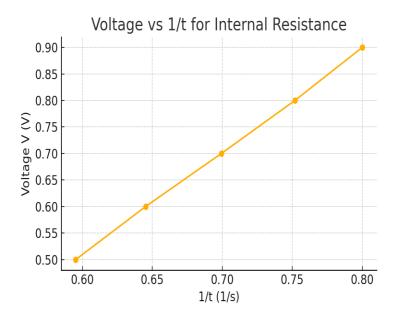
Let $T_a = 99^{\circ}C$

- (ii) Quickly place on wooden block, start stopwatch
- (iii) Stir and record temp at 2-minute intervals

Time t (min) Temp (°C)							
0	99						
2	93						
4	87						
6	81						
8	76						
10	72						
12	68						
14	65						
16	62						
18	59						
20	56						

Plot T vs t, determine cooling rate at 75°C

Repeat for B, let B boil at 78°C, and cool faster


- (vi) Liquid A is water, Liquid B is likely ethanol
- 3. The aim of this experiment is to determine the internal resistance of a voltmeter.

Procedure:

- (i) Connect circuit as in Fig 3.
- (ii) Set V to various values (0.9, 0.8, 0.7 ...), record balance length ℓ and t.

$$\begin{array}{c|cccc} \mid V \; (volts) \mid \ell \; (cm) \mid t \; (s) \mid \\ \mid ------ \mid & \mid \cdot \cdot \cdot \cdot \cdot \cdot \mid \\ \mid 0.9 & \mid 45 & \mid 1.25 \mid \\ \mid 0.8 & \mid 40 & \mid 1.33 \mid \\ \mid 0.7 & \mid 35 & \mid 1.43 \mid \\ \mid 0.6 & \mid 30 & \mid 1.55 \mid \\ \mid 0.5 & \mid 25 & \mid 1.68 \mid \\ \end{array}$$

Plot a graph of V (vertical) against 1/t (horizontal)

(iv) From slope S and formula:

V = IR

 $R = V/I = V \times t$

Use slope S to find R_{ν} average

Errors:

- Fluctuation in voltmeter readings
- Loose connections in potentiometer