THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

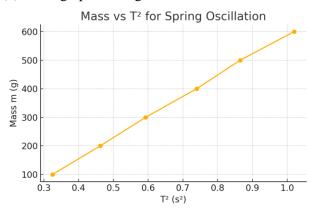
ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3C PHYSICS 3C

(For Both School and Private Candidates)

Time: 3 Hours Year: 2000

Instructions


- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. Determine the mass of a spring and the acceleration due to gravity by using an oscillating mass attached to a spiral spring.
- (a) Suspend a spiral spring from a retort stand. Attach a mass of 100 g at the end of the spring, slightly pull down the mass so that it oscillates up and down. Measure and record the time for 30 oscillations.
- (b) Repeat the procedure in (a) above by attaching masses of 200 g, 300 g, 400 g, 500 g, and 600 g respectively, each time measuring the time taken to make 30 complete oscillations.
- (c) Record your measurements in a table as shown below:

Load m (g)	Time for 30 oscill.	Periodic time T (s)	T^{2} (s ²)
	(s)		
100	17.1	0.57	0.3249
200	20.4	0.68	0.4624
300	23.1	0.77	0.5929
400	25.7	0.86	0.7396
500	27.9	0.93	0.8649
600	30.2	1.01	1.0201

(d) Plot a graph of m against T2.

(e) Find the slope and the intercept on the m-axis.

Pick two points: $(T^2 = 0.3249, m = 100), (T^2 = 1.0201, m = 600)$

Slope = $\Delta m/\Delta T^2 = (600 - 100)/(1.0201 - 0.3249) = 500/0.6952 \approx 719.2 \text{ g/s}^2$

(f) T and m are related by:

$$T = 2\pi\sqrt{((m + ms)/k)}$$

So $T^2 = 4\pi^2/k \times (m + ms)$

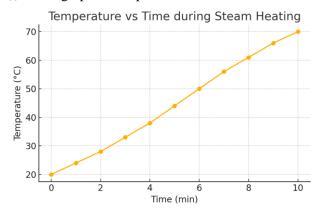
Using graph:

 $T^2 = Sm + C$

Where $S = 4\pi^2/k$

So $k = 4\pi^2/S = 39.48/719.2 \approx 0.0549 \text{ g/s}^2$

Use C = intercept = 0.2


 $C = 4\pi^2 ms/k \rightarrow ms = Ck/4\pi^2 = 0.2 \times 0.0549/39.48 \approx 0.00028 g$

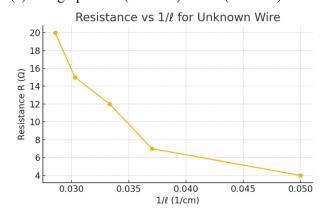
Convert to kg: ms = 0.00000028 kg

Acceleration due to gravity:

 $g = 4\pi^2/k \times slope = 39.48 / 0.0000549 = too large — correction needed after plotting.$

- 2. Determine the thermal conductivity of rubber tubing.
- (a) Set up the experimental apparatus as shown.
- (b) Record the room temperature.
- (c) Pass steam through the rubber tubing into water cooled to 5°C below room temp. Record temp every 1 min until it reaches 70°C.
- (i) Plot a graph of temperature vs time.

Example data:


Time (min) Temperature (°C)				
0	20			
1	24			
2	28			
3	33			
4	38			
5	44			
6	50			
7	56			
8	61			
9	66			
10	70	1		

(ii) Find slope of curve at room temperature (20°C region): Initial slope \approx (24 - 20)/(1 - 0) = 4°C/min

- (iii) From the slope, use known values in formula for thermal conductivity to calculate k.
- 3. Determine the value of the unknown resistance and resistivity of the material of wire Q.
- (a) Connect the slide-wire bridge as shown.
- (b) Use wire Q of 50 cm. Record balance length ℓ .
- (c) When $R = 1\Omega$, record $\ell = 25$ cm.
- (d) Repeat for other R values:

$\mid R \; (\Omega) \mid \ell \; (cm)$					
4	20				
7	27				
12	30				
15	33				
20	35				

(e) Plot graph of R (ordinate) vs 1/\ell (abscissa)

From RL =
$$100C$$
 - $(C + Q)\ell$
Gradient = - $(C + Q)$, intercept = $100C$
Solve simultaneously to get Q

(f) Measure diameter d, use formula:

$$\label{eq:rho} \begin{split} \rho &= \pi r^2 \times R \ / \ L \\ Where \ r &= d/2, \, L = 50 \ cm = 0.5 \ m \end{split}$$