THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

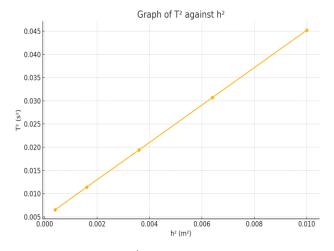
ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3C PHYSICS 3C

(For Both School and Private Candidates)

Time: 3 Hours Year: 2010

Instructions


- 1. This paper consists of THREE questions.
- 2. Answer all questions.

- 1. The aim of this experiment is to determine the radius of gyration k of the rectangular cardboard and the acceleration due to gravity g.
- (a) You find the centre of gravity G by suspending the cardboard from two different corners and drawing vertical plumb lines. Their intersection is point G.
- (b) Suspend the cardboard from holes at different distances h from G and record the time for 10 oscillations. Calculate the period T.
- (c) Tabulated data:

$\mid h\left(m\right)\mid h^{2}\left(m^{2}\right)\mid T\left(s\right)\mid T^{2}\left(s^{2}\right) \mid$					
	-				
0.02 0.0004	0.0809	0.0065			
0.04 0.0016	0.1066	0.0114			
0.06 0.0036	0.1393	0.0194			
$ \ 0.08\ \ 0.0064$	0.1752	0.0307			
0.10 0.0100	0.2125	0.0452			

(d) Plot a graph of T² against h².

The relation is:
$$T = 2\pi\sqrt{((k^2 + h^2)/gh)}$$

Squaring gives:
$$T^2 = (4\pi^2/g)(k^2 + h^2) = (4\pi^2/g)h^2 + (4\pi^2k^2/g)$$

So:

Slope =
$$4\pi^2/g \rightarrow g = 4\pi^2 /$$
 slope
Intercept = $(4\pi^2k^2)/g \rightarrow k = \sqrt{(intercept \times g / 4\pi^2)}$

Choose two points:
$$(0.0004, 0.0065)$$
 and $(0.0100, 0.0452)$
Slope = $(0.0452 - 0.0065) / (0.0100 - 0.0004) = 0.0387 / 0.0096 = 4.031$

Thus:

$$g = 39.48 / 4.031 = 9.80 \text{ m/s}^2$$

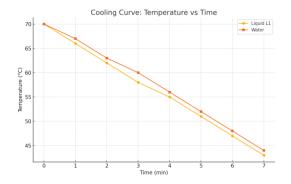
Use intercept ≈ 0.005

$$k^2 = (intercept \times g) / 4\pi^2 = (0.005 \times 9.80) / 39.48 = 0.049 / 39.48 = 0.00124$$

$$k = \sqrt{0.00124} = 0.035 \text{ m}$$

(e) Two sources of error:

Error in measuring h from G.


Timing error due to reaction time.

- 2. You are required to investigate the specific heat capacity of a liquid L by the method of cooling.
- (a) Recorded data:

| Time (min) | Temperature L1 (°C) | Temperature Water (°C) |

0	70	70	· I
1	66	67	
2	62	63	
3	58	60	
4	55	56	1
5	51	52	1
6	47	48	
7	43	44	

(b) Plot both cooling curves on same axes.

(i) Time taken for cooling from 55°C to 45°C:

L1: From 4 to 6 mins = 2 mins

Water: From 4 to approx 5.5 mins = 1.5 mins

(ii) Use:

$$(M c + M L C L)\Delta\theta = (M c + M W C W)\Delta\theta \rightarrow use rates$$

$$M_c = 0.15 \text{ kg}$$

 $C_c = 4200 \text{ J/kg}^{\circ}\text{C}$

$$M_L = M_W = 0.1 \text{ kg}$$

$$C_W = 4200 \text{ J/kg}^{\circ}\text{C}$$

Time for L1 = 120 s

Time for W = 90 s

Let
$$Q_L = (M_c C_c + M_L C_L) \times 10 / 120$$

 $Q_W = (M_c C_c + M_W C_W) \times 10 / 90$

Equating rates:

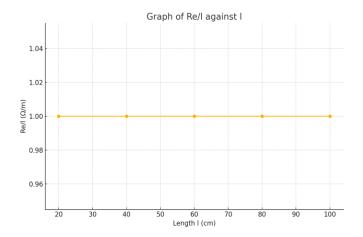
$$\left[(0.15 \times 4200) + 0.1 \times C_L \right] / \ 120 = \left[(0.15 \times 4200) + (0.1 \times 4200) \right] / \ 90$$

$$[630 + 0.1 \text{ C_L}] / 120 = [630 + 420] / 90 = 1050 / 90 = 11.67$$

Cross-multiplied:

$$630 + 0.1 \text{ C_L} = 11.67 \times 120 = 1400.4$$

$$0.1 \text{ C_L} = 770.4$$


$$C_L = 7704 \text{ J/kg}^{\circ}\text{C}$$

So, specific heat capacity of $L1 = 7704 \text{ J/kg}^{\circ}\text{C}$

3.

(a) The table of observations:

(b)(i) The graph of Re/I (y-axis) against I (x-axis) is a straight horizontal line at Re/I = 1.0.

- (ii) From the graph, the average value of Re/l is Q = $1.0 \Omega/m$.
- (iii) To calculate resistivity:

Let the measured diameter of the wire be $d=0.50\ mm=0.0005\ m$.

Radius r = 0.00025 m

Cross-sectional area $A = \pi r^2 = 3.142 \times (0.00025)^2 = 1.963 \times 10^{-7} \text{ m}^2$

Resistivity $\rho = Q \times A = 1.0 \times 1.963 \times 10^{-7} = 1.96 \times 10^{-7} \ \Omega m$